Hojoon Lee

Hello! I am an upcoming Ph.D graduate from KAIST AI, advised by Jaegul Choo.

My research interests lies in developing scalable robotic foundation models that can continually adapt, generalize, and solve diverse real-world tasks.
Currently, I'm leading Davian Robotics, a subgroup of Davian Lab focused on open-source robotic research. I’m best known for the Simba series (1, 2), a set of neural network architectures for scalable reinforcement learning in robotics.

I enjoy collaborating with interdisciplinary teams and mentoring junior researchers. Feel free to reach out if you'd like to collaborate :)

Email  /  CV  /  Google Scholar  /  LinkedIn  /  Twitter  /  Github

profile photo
Publications
Selected / All

Maintaining Plasticity for Scalable Deep Reinforcement Learning
Hojoon Lee
Commitee: Jaegul Choo, Chulhee Yun, Kimin Lee, Clare Lyle, Peter Stone.
Thesis.
slide


RDA: Reward Design Agent for Reinforcement Learning
Hojoon Lee, Ajay Subramanian. Ben Abbatematteo, Pedro Matias, Vijay Veerabadran,
Karl Ridgeway, Nitin Kamra
Preprint.
Coming Soon


FIRE: Frobenius-Isometry Reinitialization for Balancing Stability-Plasticity Tradeoff
Isaac Han. Sangyeon Park, Seungwon Oh, Donghu Kim, Hojoon Lee, Kyungjoon Kim.
Preprint.
arXiv


Unleashing the Architectural Potential of RL in Visual Continuous Control
Donghu Kim, Youngdo Lee, Hojoon Lee, Johan Obando Ceron, Byungkun Lee,
Aaron Courville, Pablo Samuel Castro, Jaegul Choo, Clare Lyle.
Preprint.
arXiv

preprint2025phuma

PHUMA: Physically-Grounded Humanoid Locomotion Dataset
Kyungmin Lee, Sibeen Kim, Minho Park, Hyunseung Kim, Dongyoon Hwang,
Hojoon Lee, Jaegul Choo.
Preprint.
project page / arXiv / code

preprint2025acg

ACG: Action Coherence Guidance for Flow-based VLA models
Minho Park*, Kinam Kim*, Junha Hyung, Hyojin Jang, Hoiyeong Jin, Jooyeol Yun,
Hojoon Lee, Jaegul Choo.
Preprint.
project page / arXiv / code

neurips2024dodont

A Champion‑level Vision‑based RL Agent for Competitive Racing in Gran Turismo 7
Hojoon Lee*, Takuma Seno*. Jun Jet Tai*, Kaushik Subramanian, Kenta Kawamoto, Peter R. Wurman, Peter Stone,
IEEE RA-L & ICRA'26.
arXiv / video

preprint2025simbav2

SimbaV2: Hyperspherical Normalization for Scalable Deep Reinforcement Learning
Hojoon Lee*, Youngdo Lee*. Takuma Seno. Donghu Kim, Peter Stone, Jaegul Choo.
ICML'25, Spotlight
project page / arXiv / code

iclr2025simba

SimBa: Simplicity Bias for Scaling Up Parameters in Deep Reinforcement Learning
Hojoon Lee*, Dongyoon Hwang*, Donghu Kim, Hyunseung Kim, Jun Jet Tai, Kaushik Subramanian, Peter R. Wurman, Jaegul Choo, Peter Stone, Takuma Seno.
ICLR'25, Spotlight
project page / arXiv / code

neurips2024dodont

Do's and Don'ts:Learning Desirable Skills with Instruction Videos
Hyunseung Kim, Byungkun Lee, Hojoon Lee, Dongyoon Hwang, Donghu Kim, Jaegul Choo,
NeurIPS'24.
project page / arXiv

icml2024hnt

Slow and Steady Wins the Race: Maintaining Plasticity with Hare and Tortoise Networks
Hojoon Lee, Hyeonseo Cho, Hyunseung Kim, Donghu Kim, Dugki Min, Jaegul Choo, Clare Lyle.
ICML'24.
arXiv / poster / Bibtex

icml2024atari-pb

ATARI-PB: Investigating Pre-Training Objectives for Generalization in Vision-Based RL
Donghu Kim*, Hojoon Lee*, Kyungmin Lee*, Dongyoon Hwang, Jaegul Choo.
ICML'24.
project page / arXiv / poster / Bibtex

icml2024coin

Adapting Pretrained ViTs with Convolution Injector for Visuo-Motor Control
Dongyoon Hwang*, Byungkun Lee*, Hojoon Lee, Hyunseung Kim, Jaegul Choo.
ICML'24.
project page / arXiv / Bibtex

neurips2023plastic

PLASTIC: Improving Input and Label Plasticity for Sample Efficient Reinforcement Learning
Hojoon Lee*, Hanseul Cho*, Hyunseung Kim*, Daehoon Gwak, Joonkee Kim, Jaegul Choo, Se-Young Yun, Chulhee Yun.
NeurIPS'23.
arXiv / code / slide / poster / Bibtex

neurips2023disco-dance

DISCO-DANCE: Learning to Discover Skills through Guidance
Hyunseung Kim*, Byungkun Lee*, Hojoon Lee, Dongyoon Hwang, Jaegul Choo.
NeurIPS'23.
project page / arXiv / code / Bibtex

icml2023simtpr

SimTPR: On the Importance of Feature Decorrelation for Unsupervised Representation Learning for Reinforcement Learning
Hojoon Lee, Koanho Lee, Dongyoon Hwang, Hyunho Lee, Byungkun Lee, Jaegul Choo.
ICML'23.
arXiv / code / poster / Bibtex

sigir2022irs

Towards Validating Long-Term User Feedbacks in Interactive Recommender System
Hojoon Lee, Dongyoon Hwang, Kyushik Min, Jaegul Choo.
SIGIR'22 (short), Honorable Mention
arXiv / poster / Bibtex

www2022draftrec

DraftRec: Personalized Draft Recommendation for Winning in MOBA Games
Hojoon Lee*, Dongyoon Hwang*, Hyunseung Kim, Byungkun Lee, Jaegul Choo.
WWW'22.
arXiv / code / poster / Bibtex


Work Experience
Sony AI Logo
Meta Reality Labs May 2025 - Nov 2025
Research Intern Seattle, USA
Krafton Logo
Krafton AI Feb 2025 - May 2025
Research Intern Seoul, Korea
Sony AI Logo
Sony AI Feb 2024 - Aug 2024
Research Intern Tokyo, Japan
Neowiz Logo
Kakao Enterprise Sep 2021 - Nov 2021
Research Intern Pangyo, Korea
Neowiz Logo
Neowiz Mar 2019 - Jun 2019
Research Intern Pangyo, Korea

Template based on Jon Barron's website.