Towards Plastic Neural Network
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What is Plasticity

The ability of a learning system to adapt to changes in its environment or objective.
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Why Plasticity is important?
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Why Plasticity is important?

Learn once

Data |

Deploy once

Static Learning System Continual Learning System

Learn continually

Deploy continually



Loss of Plasticity Phenomena in Neural Network



Warm-Starting

Motivation

e (Can we utilize a subset of the dataset as a good prior?

On Warm-Starting Neural Network Training., NeurlPS 2020.
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Warm-Starting

Motivation

e (Can we utilize a subset of the dataset as a good prior?

Warm-Starting

e Pre-training a neural network with a subset of the entire dataset.

Experimental Setup
« Dataset: CIFAR-10, CIFAR-100, SVHN

« Architecture: Resnet-18
e Training:
e Split Dataset into two chunks: A and B
« Train the model, 8, from the chunk A.
e Continually train the model, 8, from the chunk A & B.

On Warm-Starting Neural Network Training., NeurlPS 2020.



Warm-Starting

Results
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0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700

Epoch Epoch
RESNET RESNET MLP MLP LR LR
CIFAR-10 SGD ADAM SGD ADAM SGD ADAM

RANDOM INIT 56.2 (1.0) 78.0 (0.6) 39.0(0.2) 39.4 (0.1) 40.5(0.6) 33.8 (0.6)
WARM START 51.7 (0.9) 74.4 (0.9) 37.4(0.2) 36.1 (0.3) 39.6 (0.2) 33.3(0.2)
SVHN

RANDOM INIT 89.4 (0.1) 93.6 (0.2) 76.5(0.3) 76.7 (0.4) 28.0(0.2) 22.4 (1.3)
WARM START 87.5(0.7) 93.5(0.4) 75.4(0.1) 69.4 (0.6) 28.0(0.3) 22.2(0.9)
CIFAR-100

RANDOM INIT 18.2 (0.3) 41.4 (0.2) 10.3(0.2) 11.6 (0.2) 16.9 (0.18) 10.2 (0.4)
WARM START 15.5(0.3) 35.0(1.2) 9.4 (0.0) 9.9(0.1) 16.3(0.28) 9.9 (0.3)

On Warm-Starting Neural Network Training., NeurlPS 2020.

Table 1: Validation percent
accuracies for various opti-
mizers and models for warm-
started and randomly initial-
ized models on indicated
datasets. We consider an
18-layer ResNet, three-layer
multilayer perceptron (MLP),
and logistic regression (LR).



Warm-Starting

Solution: Shrink & Perturb

« Motivation: Shrink the current weights towards the initial weights.
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On Warm-Starting Neural Network Training., NeurlPS 2020.



Primacy Bias in RL

Primacy Bias

« A network’s tendency to overfit early experiences that damage the rest of the learning process.

The Primacy Bias in Deep Reinforcement Learning., ICML 2023,



Primacy Bias in RL

Primacy Bias
« A network’s tendency to overfit early experiences that damage the rest of the learning process.

Experimental Setup

e Environment: DMC Suite, Quadruped.
800 SAC with heavy priming

e Architecture: 4-layer MLP.
SAC

(@)
)
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e Algorithms
« SAC: Standard Soft Actor-Critic

Episode Return
AN
=
=

« SAC w/ HP: SAC with multiple updates at the early stages.

N
)
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e Results 0
e Heavy priming leads to an unrecoverable loss. 0.00 025 050 0.75 1.00
Environment Steps (X 10°)

The Primacy Bias in Deep Reinforcement Learning., ICML 2023,



Primacy Bias in RL

Solution: Head Reset

e Reinitialize the last few layers to forget primacy-biased features.

The Primacy Bias in Deep Reinforcement Learning., ICML 2023,



Primacy Bias in RL

Solution: Head Reset

e Reinitialize the last few layers to forget primacy-biased features.

Results
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The Primacy Bias in Deep Reinforcement Learning., ICML 2023,
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Primacy Bias in Offline20nline RL

Primacy Bias

« A network’s tendency to overfit early experiences that damage the rest of the learning process.

Experimental Setup All D4RL AntMaze Tasks
 Environment: D4RL, AntMaze. 100 -
e Architecture: 3-layer MLP. g 80 -
« Algorithms £ 60 -
©
- |QL: Standard Offline20nline RL. N o4
(o)
« RLPD: Online RL with stacked buffer (100% reset). & 20 I
@) - |QL + Finetuning
° RGSU'tS = - SAC + Offline Data
0OF m—m RLPD (Ours)
| | | 1 1 1
« Offline pre-training deteriorates online fine-tuning. 0 200 400 600 800 1000
« 100% reset rather facilitates learning process. Environment steps (x10°)

Efficient Online Reinforcement Learning with Offline Data., ICML 2023.



Summary

The neural network loses plasticity when continually trained from a subset of the dataset.



Summary

The neural network loses plasticity when continually trained from a subset of the dataset.

Reinitialization strategies are highly effective in recovering plasticity.
e Shrink & Perturb: Shrink towards initial parameter distribution.

 Head Reset: Reinitialize the last few layers of the network.



Why neural network loses plasticity?
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Preliminary

Machine Learning

 Building a model (M) that learns from the data to generalize to unseen data.

Continual Learning

e Building a model that learns from a continual stream of data to generalize to unseen data.
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Preliminary

Machine Learning

 Building a model (M) that learns from the data to generalize to unseen data.

Continual Learning

e Building a model that learns from a continual stream of data to generalize to unseen data.

Plasticity
« Model's ability to adapt to new data.

« Plasticity = Trainability + Generalizability.

Trainability Today’s Focus!

« Model’s ability to continually minimize the loss of seen data (train loss).

Generalizability

« Model’s ability to continually minimize the loss of unseen data (test loss).




Loss of Trainability in Neural Network



Loss of Trainability in Neural Network

Experimental Design

« Understand whether neural networks can continually minimize the training loss.

e Let the network continually minimize the training loss from datasets with different distributions.

Loss of Plasticity in Deep Continual Learning., CoLLA 2023.



Loss of Trainability in Neural Network

Experimental Design

« Understand whether neural networks can continually minimize the training loss.

e Let the network continually minimize the training loss from datasets with different distributions.

Experimental Setup
« Dataset: Permuted MNIST
« Model: 3-layer MLP
e Training: Continual Permutation
for task in range(num_tasks):
permute the pixels of the training dataset (mnist).

for epoch in range(epochs):

train the neural network from the permuted dataset.

Permuted MNIST

Loss of Plasticity in Deep Continual Learning., CoLLA 2023.



Loss of Trainability in Neural Network

Experimental Results

Different Stepsizes Different Network Widths Different Rates of Distribution Shift
96 96 100
step size=0.003 /_k Network Width: 10k 99 :
SEEE =01 New Permutation Every 1M Examples
94 - S| 944 \
Network Width: 1k 95
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90
90 - 901
85 200 400 600 800 °°§ 75 150 %270 12M  24M  36M  48M
Task Number Task Number Example Number (Bins of 1M)

« The network gradually loses its trainability.
e Loss of trainability is prevalent when using:
« Larger learning rates.
« Shallower model architecture.

« Frequent distribution shifts.

Loss of Plasticity in Deep Continual Learning., CoLLA 2023.



Loss of Trainability in Neural Network

Why does this happen?

Percent of Dead Units
(Computed before each task)

Weight Magnitude

(Average over all weights, binned over 60k examples)

Effective Rank
(Computed before each task, Scaled € [0,100])

30 0.10 50
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0.02 101
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e Loss of trainability correlates to:
e The increase of dead units.
« The increase in weight magnitude.

e« The decrease of the effective feature rank.

Loss of Plasticity in Deep Continual Learning., CoLLA 2023.

Task Number




Loss of Trainability in Neural Network

Can existing regularization methods mitigate the loss of trainability?

Percent Correct on MNIST Percent of Dead Units Weight Magnitude Effective Rank
(averaged over 30 runs) (Computed before each task) (Average over all weights) (Computed before each task, Scaled to [0,100])
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« SGD - ADAM intensified the loss.
 L2-Reg, Dropout, and Normalization did not mitigate the loss of trainability.

e Shrink & Perturb (=Reinitialization) was the only one that was helpful.

Loss of Plasticity in Deep Continual Learning., CoLLA 2023.



Simple Remedies to Mitigate the Loss of Trainability

Maintaining Plasticity in Continual Learning via Regenerative Regularization., arXiv 2023.



Simple Remedies to Mitigate the Loss of Trainability

Regenerative Regularization (Regen)

 Motivation: A randomly initialized neural network can easily minimize the training loss.

e Perform L2 regularization toward initial parameter values.

Ereg(e) — ‘Ctrain(e) + )‘”‘9 - ‘90“%

Maintaining Plasticity in Continual Learning via Regenerative Regularization., arXiv 2023.



Simple Remedies to Mitigate the Loss of Trainability

Regenerative Regularization (Regen)

 Motivation: A randomly initialized neural network can easily minimize the training loss.

e Perform L2 regularization toward initial parameter values.

Ereg(e) — ‘Ctrain(e) + )‘”‘9 - ‘90“%

Concatenated RelLU activation (CReLU)

e Motivation: Always keep the number of activation units (=prevent dead ReLU).

e CRelLU(h) = [ReLU(h), ReLU(-h)].

Maintaining Plasticity in Continual Learning via Regenerative Regularization., arXiv 2023.



Simple Remedies to Mitigate the Loss of Trainability

Results
== Baseline === Layer Norm === Shrink & Perturb == ReDO
...... L2 Init L2 - Continual Backprop Concat ReLU
Permuted MNIST Random Label MNIST

| SRR S S R e g 3 -

> A

2 07511 G

2

ke |

o 0.50----

s

(@)]

é 0.25

e Using L2 Init (=Regen) and CReLU activation successfully maintained the trainability.

Maintaining Plasticity in Continual Learning via Regenerative Regularization., arXiv 2023.
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e Dead activation units.

e Gradient starvation (gradient does not propagate to the upper layers).
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How can we maintain trainability?

o Keep active units = CReLU.

e Return to its original weights = Regen.

Note: Although these solutions do not completely mitigate the loss of trainability,

They can solve the problem in most cases.



Summary

Why does loss of trainability occur?

e Dead activation units.

e Gradient starvation (gradient does not propagate to the upper layers).

How can we maintain trainability?

o Keep active units = CReLU.

e Return to its original weights = Regen.

Note: Although these solutions do not completely mitigate the loss of trainability,

They can solve the problem in most cases.

Limitation

« These experiments do not consider the network’s generalization ability.
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Loss of Generalizability in Neural Network

Relationship between Trainability and Generalizability

« Maintaining Trainability is a necessary condition for maintaining Generalizability.

« However, improved Trainability does not guarantee improved Generalization.

Slow and Steady Wins the Race: Maintaining Plasticity with Hare and Tortoise Networks., arXiv 2024.



Loss of Generalizability in Neural Network

Relationship between Trainability and Generalizability

« Maintaining Trainability is a necessary condition for maintaining Generalizability.

« However, improved Trainability does not guarantee improved Generalization.

Experimental Design

« Understand whether neural networks can continually minimize the test loss.
 Two-stage training protocol.

« Warm-Starting: Let the network first train on a noisy subset.

e Fine-tuning: Finetune the warm-started network on a complete, noise-free dataset.

e Generalizability Loss = Test Accuracy of Fresh network - Test Accuracy of Warm-started network.

Slow and Steady Wins the Race: Maintaining Plasticity with Hare and Tortoise Networks., arXiv 2024.



Loss of Generalizability in Neural Network

Experimental Setup
o Dataset: MNIST, CIFAR-10, CIFAR-T00, Tiny-ImageNet

« Model: MLP, ResNet18, Vit-Tiny, VGG16
e Training: Warm-Starting

for epoch in range(epochs):

train the neural network from the subset (p%) of the noisy (q%) dataset.

for epoch in range(epochs):
train the neural network from the complete noise-free dataset.

evaluate test accu racy.

Slow and Steady Wins the Race: Maintaining Plasticity with Hare and Tortoise Networks., arXiv 2024.



Loss of Generalizability in Neural Network

Experimental Results

MNIST (3-layer MLP) CIFAR-10 (ResNet-18) CIFAR-100 (ViT-Tiny) Tiny ImageNet (VGG-16)
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e Loss of generalizability is prevalent when trained from
« Smaller fraction of subsets.
« Noisy labels.

« These two factors are highly relevant to reinforcement learning with temporal difference objective.

Slow and Steady Wins the Race: Maintaining Plasticity with Hare and Tortoise Networks., arXiv 2024.



Loss of Generalizability in Neural Network

Why does this happen?
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« Loss of generalizability is not highly correlated to:
« Weight magnitude, weight distance, feature rank, hessian rank, dormant ratio, etc...

e It is difficult to pinpoint the reason why the warm-started model fails to generalize to the new dataset.

Slow and Steady Wins the Race: Maintaining Plasticity with Hare and Tortoise Networks., arXiv 2024.



Loss of Generalizability in Neural Network

Can existing regularization methods mitigate the loss of generalizability?

Test Accuracy

L2 — Aug Spectral Regen —— ReDo — CRelU Head Reset Shrink Perturb —— L2 + Aug + Shrink Perturb

Tiny Imagenet (VGG-16)
0.50 ' w/o warm start (+aug)

CIFAR-10 (ResNet-18) CIFAR-100 (ViT-Tiny)

w/o warm start (+aug)

w/o warm start (+aug)
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Common Regularization methods (L2, Data Augmentation):@

« However, generalization loss is still persistent (w/o warm start (+aug) - aug > 0).

Trainability-enhancing methods ( ): ‘

« While maintaining trainability is a prerequisite for generalization, it may not be critical in modern architecture.

e Reinitialization methods (Head Reset, Shrink &Perturb): @

« Highly effective. However, contrary to RL literature, Head Reset was not scalable in deeper architectures.
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Summary

When does the loss of generalizability occur?

« Trained with (1) smaller subsets and/or (2) noisy labels.

Why does the loss of generalizability occur?

 Not well understood.

How can we maintain generalizability?

« Standard Regularization methods (L2, Data Augmentation).

e Reinitialization methods.

Limitations of Reinitialization

e Increase the computation cost to recover.

« Infeasible in online learning (privacy and safety issues).



Then, How does a human maintain plasticity?



Complementary Learning System
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« Rapid learning. e Gradual Learning.

« Episodic memory (specific experiences). e Generalized knowledge of experiences.



Complementary Learning System

Hippocam consolidate Neocortex \ /
¢

010 F >
o i
Vad
Hippocampus Neocortex
« Rapid learning. e Gradual Learning.
« Episodic memory (specific experiences). e Generalized knowledge of experiences.

Learning and Forgetting

« Memories are first stored in the Hippocampus and gradually transferred to the neocortex.

« Memories are forgotten to learn new information but consolidated memories are protected.



Can we maintain Generalizability by
imitating the Human Brain?



Hare and Tortoise
L(fs, (), y)

{} oo

Hare . copy Tortoise
network network
ema
Hh ---------- > Ht

g B

A
X
Hare Network Tortoise Network
 |mitates Hippocampus.  |Imitates Neocortex.
e Rapid Learning. « Slow Learning.
« Forget memory by reinitialization to Tortoise. e Gradually learn knowledge by ema.

Slow and Steady Wins the Race: Maintaining Plasticity with Hare and Tortoise Networks., arXiv 2024.



Hare and Tortoise

Pseudocode
for step, (x,y) in enumerate(data_loader):
L(fg,(x),y)
T lgrad
logits = h(x)
loss = loss_fn(logits, vy)
Hare . oy Tortoise
loss.backward() network network
o H cma 9
optimizer.step(h.params) h T »> t

g B

R >

h.params = mxt.parms + (1I-m)xh.params

h.params = t.params

Slow and Steady Wins the Race: Maintaining Plasticity with Hare and Tortoise Networks., arXiv 2024.



Hare and Tortoise

Can Hare and Tortoise mitigate the loss of generalizability?

—— Hare Tortoise EMA Self Distill Head Reset —— Shrink Perturb

CIFAR-10 (ResNet-18) CIFAR-100 (ViT-Tiny) Tiny Imagenet (VGG-16)

0.95 0.60
w/o warm start (+a

0.50 w/o warm start (+aug)

2 0.90 0 56 Mlowarm syt (+aug) T G040
S v o
3 0.85 @ warnj gtart (+aug) &J E D
+ o o o e e e RS s e e = o o = g S ® 0.52  warm 0
& S N A = 0.20
0.80
0.48
0.10
0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
Epoch

e« Hare and Tortoise =~ Shrink and Perturb.

e« Hare and Tortoise >> EMA.

e Reinitialization to Hare brings extra benefits.

e« Hare and Tortoise >> Self-Distillation.

« Encouraging the network to freely explore the optimization landscape brings benefits.

Slow and Steady Wins the Race: Maintaining Plasticity with Hare and Tortoise Networks., arXiv 2024.



Hare and Tortoise

Application to Reinforcement Learning

Table 1. Atari-100k Results. BBF results without Hare & Tortoise come from the original paper (Schwarzer et al., 2023). All the other
experiments, including DrQ, were conducted based on their original code and averaged over 5 random seeds with a replay ratio of 2.

Algorithm Architecture S&P HR H&T SSL GPUhours IQM 1T MedianT MeanT OGJ|
- - - - 0.243 0.193 0468 0.642

v - - - 0.139 0.138 0458 0.728

. - - v - 0.287 0.260 0471 0.617

DrQ (Kostrikov et al., 2020) 3-layer ConvNet i 20k i i 0.5 0.332 0.254 0.694  0.580
- 40k - - 0.288 0.241 0.532 0.607

- 40k v - 0.328 0.329 0.584 0.583

v v - - 14 0.826 0.711 1.737  0.397

BBF (Schwarzer et al., 2023)  15-layer ResNet v v v - ’ 0.891 0.749 1.719  0.372
v v - v 2.8 0.940 0.755 2175 0.377

e DrQ: H&T + Reset (40K) = Reset (20K) >> H&T = Reset(40K) >> H&T + Reset(20K) >> None.

« BBF: H&T was competitive with SSL (Self-Predictive Learning) without any computational cost.

Slow and Steady Wins the Race: Maintaining Plasticity with Hare and Tortoise Networks., arXiv 2024.



Thought Experiment



Optimization from Stationary Distribution

Gradient Descent
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Optimization from Stationary Distribution

Gradient Descent




Optimization from Non-Stationary Distribution

Gradient Descent




Optimization from Non-Stationary Distribution

Gradient Descent (with warm-starting)




Optimization from Non-Stationary Distribution

Gradient Descent (without warm-starting)




Optimization from Non-Stationary Distribution

Gradient Descent (Regenerative Regularization)




Optimization from Non-Stationary Distribution

Gradient Descent (Shrink & Perturb)




Optimization from Non-Stationary Distribution

Gradient Descent (with Hare and Tortoise)




Recommended Readings

General
e On Warm-Starting Neural Network Training., NeurlPS 2020.

e Loss of Plasticity in Deep Continual Learning., CoLLA 2022 talk.

e Continual Learning as Computationally Constrained Reinforcement Learning., COLLA 2023 talk.
e Understanding plasticity in neural networks., ICML 2023.

« Maintaining Plasticity in Continual Learning via Regenerative Regularization., arXiv 2023.

e A study on the plasticity of neural networks., arXiv 2023.

e Curvature explains Loss of Plasticity., arXiv 2023.

CLS theory

 What Learning Systems do Intelligent Agents Need? Complementary Learning Systems., Feature Review, 2016.

« A Complementary Learning Systems Approach to Temporal Difference Learning., arXiv 2019.



Recommended Readings

Reinforcement Learning

Understanding and Preventing Capacity Loss in Reinforcement Learning., ICLR 2022.

The Primacy Bias in Deep Reinforcement Learning., ICML 2022,

Sample-Efficient Reinforcement Learning by Breaking the Replay Ratio Barrier., ICLR 2023.
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