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What is Intelligent Robot?






What is Intelligence?

The ability to perceive, plan, act, and adapt.

Patrick Winston



What is Artificial Intelligence?

The study of computations that can learn to perceive, plan, act, and adapt.

Patrick Winston



History of Artificial Intelligence 1947-2023

1947 1966 2011 2015
Alan Turing talks MIT releases the IBM Watson beats AlphaGo beats
about Al in London ELIZA chatbot players on Jeopardy! Fan Hui

1940s 1950s 1960s 1970s 1980s 1990s 2000s 2010s

1950 1997 2017 Google Transformer
Turing’s papers on Deep Blue beats 2018 GPT-1 117M
Intelligent machines Garry Kasparov in chess 2019 GPT-21.5B
G ® & 20 2023
Jan May Jun Sep

Google Meena 2.6B GPT-3175B iGPT 6.8B OpenAl releases ChatGPT
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Where are we now for Intelligent Robot?
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How can we make Intelligent Robot?
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Source of Training Robot

e Online Dataset

(+) explore the uncertain region.

(-) time-consuming, expensive to collect.
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Source of Training Robot

e Online Dataset

e (+) explore the uncertain region.

e (-) time-consuming, expensive to collect.

e Offline Dataset

e (+) cheaper than online dataset.

e (=) distribution shift, cannot explore the uncertain region. IM robot trajectory

e Simulator i

« (+) cheaper than online & offline dataset. - ’ e

Real World Simulated

e (=) larger distribution shift, hard to construct.
Simulation City Issac Gym

Waymo NVIDIA



Pretrain-then-Finetune paradigm
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Taxonomy of Pretraining Algorithms
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Pretraining from Offline Dataset



Offline Representation Learning

e Train effective [Perceiver} from offline dataset.

e Invariance vs Generation
« Let X be data, Z(X) be representation.
e Let ] denotes mutual information of two random variables.
 Invariance: Maximize I(Z(X;); Z(X;)) where X;, X, are invariant data.

 Generation: Maximize I(Z(X); X) where X is perturbed image of X.
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Offline Representation Learning

 CURL (Learning Spatial Invariance)

« Maximize I(Z(X;1); Z(X,)) where X;, X, are same data with different augmentation.
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CURL: Contrastive Unsupervised Representations for Reinforcement Learning, Srinivas et al. ICML, 2020.
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Offline Representation Learning

e ATC (Learning Spatiotemporal Invariance)

CONTRAST W

~

« Maximize I(Z(X¢41); Z(X)) where X, 4, X; are data from same trajectory.
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Decoupling Representation Learning from Reinforcement Learning, Stooke et al. ICML, 2021.



Offline Representation Learning

« MAE (Spatial Generation)
« Maximize I(Z(X); X) where X is perturbed image of X.
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mask 85% mask 95%
Masked autoencoder (like BERT) Reconstruction

Masked Autoencoders Are Scalable Vision Learners, He et al. CVPR, 2022.



Offline Representation Learning

 SiamMAE (Spatiotemporal Generation)

e Maximize I(Z(X¢4x); X¢) Where X, is perturbed image of X; 4.

frame 1 patchify
P "‘UIIHI
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frame 2 patchify & mask

Masked temporal autoencoder Reconstruction

Siamese Masked Autoencoders, Gupta et al. NeurlPS, 2023.



Offline Reinforcement Learning

e Train effective [Perceiver][ Actor ] from offline dataset.
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Q-Learning (Optimizing Bellman Equation) Sequence Modeling




Offline Reinforcement Learning

 CQL (Conservative Q-Learning)
« Applying Q-learning to offline dataset will cause extrapolation error.
« Extrapolation error brings overestimation biases.

« Solve it by conservative Q-value estimation to unseen actions.
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Offline Reinforcement Learning

e DT (Decision Transformer)

 Formulate RL as a big sequence modeling problem.
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Decision Transformer: Reinforcement Learning via Sequence Modeling., Chen et al., NeurlPS 2021.



Pretraining from Simulator



Unsupervised Reinforcement Learning

e Train effective[ Perceiver ][ Actor ]from simulator.

« Assumes we do not have an access to a pre-defined reward function.

How can you prepare for an
unknown future goal?

training time: unsupervised

Berkely, CS 285: Deep Reinforcement Learning., Sergey Levine.



Unsupervised Reinforcement Learning

e Curiosity-driven exploration

« Explore ‘curious’ states.

 Data coverage maximization

« Maximize the ‘coverage of data’ collected through pretraining.

« Skill discovery

e Learn task-agnostic skills.

« World model

e Learn dynamics of the environment.

Pretraining in Deep Reinforcement Learning: A Survey, Xie. Arxiv preprint 2022.



Unsupervised Reinforcement Learning

e RND (Curiosity Driven Exploration)

« Low prediction error: high reward
g
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Unsupervised Reinforcement Learning

 DISAGREE (Curiosity Driven Exploration)

« Disagreement among ensembles: high reward
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Unsupervised Reinforcement Learning

 APT (Data-coverage maximization)

« Maximize the state entropy (H(d,)) in replay buffer

_____________________________________

—————————————————————————————

K-nearest neighbors
distance

[ representation ]

State entropy as reward

Behavior From the Void: Unsupervised Active Pre-Training, Liu et al. NeurIPS 2021.



Unsupervised Reinforcement Learning

 DIAYN (Skill-Discovery)

« Maximize the mutual information between state and skill I(s; z)

- Zzeroshot reward: 140 - Zeroshot reward:- 199 - ‘zeroshot reward: 416

Move forward Move backward (ready for) flip

. Zeroshot reward:- 140 reward: 636
y finetune | :
Move forward Run forward

Diversity is all you need: learning skills without a reward function, Eysenbach et al. ICLR 2019.



Unsupervised Reinforcement Learning

 DIAYN (Skill-Discovery)

« Maximize the mutual information between state and skill I(s; z)
1. Sample skill z ~ p(2)
2. Rollout trajectory T ~ m(als, z)

3. Maximize mutual information between skill z and state s

Mutual information as reward

Diversity is all you need: learning skills without a reward function, Eysenbach et al. ICLR 2019.



Unsupervised Reinforcement Learning

e Plan2Explore (World-Model)

« Learn various components to represent the environment.
1. Dynamics model f(s¢41|S¢ at)

2. (optional) reward predictor, image encoder/decoder, -

Model Learning

Task A .
rasks P4 Pretraining: learn world model
Downstream task: now we can plan with world model
Task C s e
-4
Environment Global
without Rewards  Tag.Agnostic ~ World Model Zero or Few Shot
Exploration Adaptation

Planning to explore via self-supervised world models, Sekar et al. ICML 2020.



Unsupervised Reinforcement Learning

e Plan2Explore (World-Model)

e Learn world model with disagreement
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Planning to explore via self-supervised world models, Sekar et al. ICML 2020.




Summary: Let’s Train Robot
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