Pretraining for Intelligent Agent Offline Data and Simulation Perspective

Hojoon Lee, Byungkun Lee

KAIST AI

Short Bio

Hojoon Lee

- Ph.D student at KAIST AI, advised by Jaegul Choo.
- During M.S, his papers have been rejected 7 times in a row.
- Research Interest: Representation learning for decision making.

Byungkun Lee

- Ph.D student at KAIST AI, advised by Jaegul Choo.
- During M.S, his papers have been rejected 6 times in a row.
- Research Interest: I'm exploring my interest based on eps-greedy.

What is Intelligent Robot?

What is Intelligence?

The ability to perceive, plan, act, and adapt.

Patrick Winston

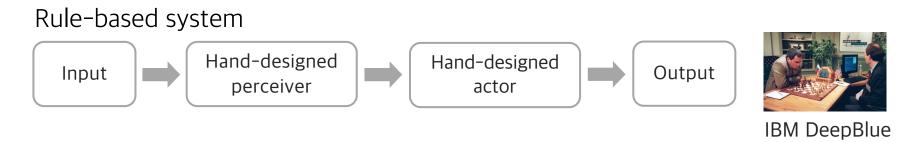
What is Artificial Intelligence?

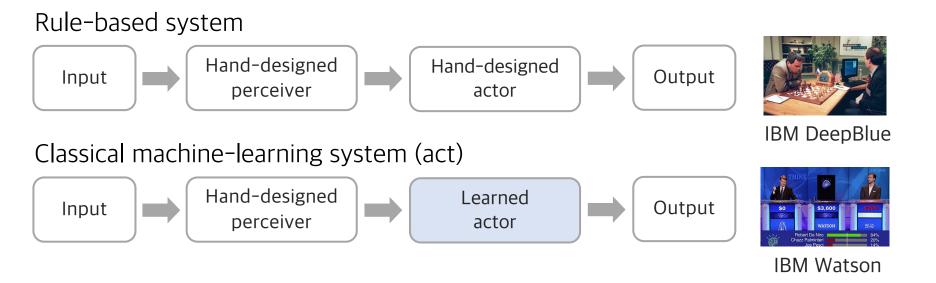
The study of computations that can learn to perceive, plan, act, and adapt.

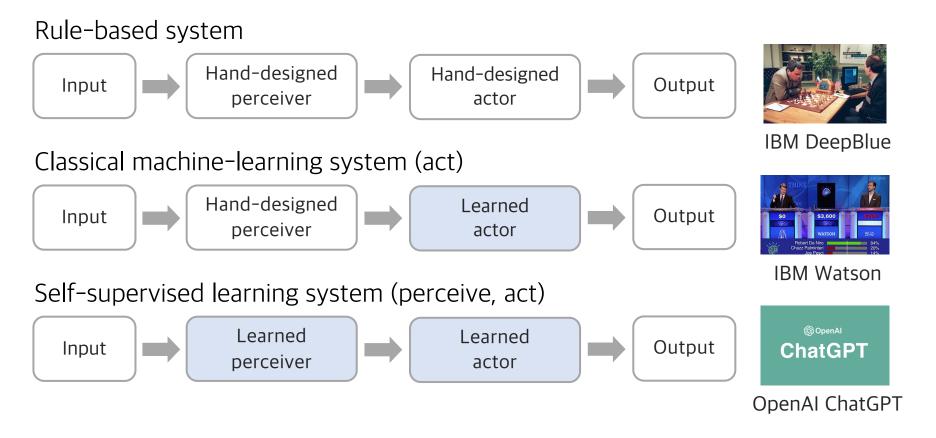
Patrick Winston

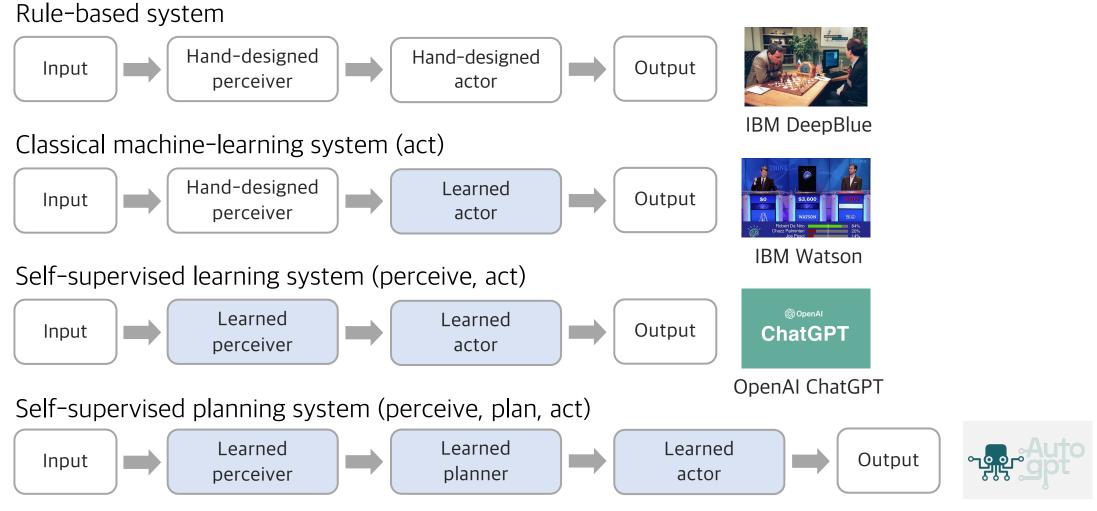
History of Artificial Intelligence 1947-2023

5			i releases the A chatbot			2011 Watson beats on <i>Jeopardy!</i>	- 381 • • • • • • • • • • • • • • • • • • •	ats
1940 s	1950 s	1960 s	1970 s	1980 s	1990 s	2000s	2010s	
1950 Turing's papers on <i>Intelligent machines</i>			1997 Deep Blue beats Garry Kasparov in chess			2017 Google Transformer 2018 GPT-1 117M 2019 GPT-2 1.5B		

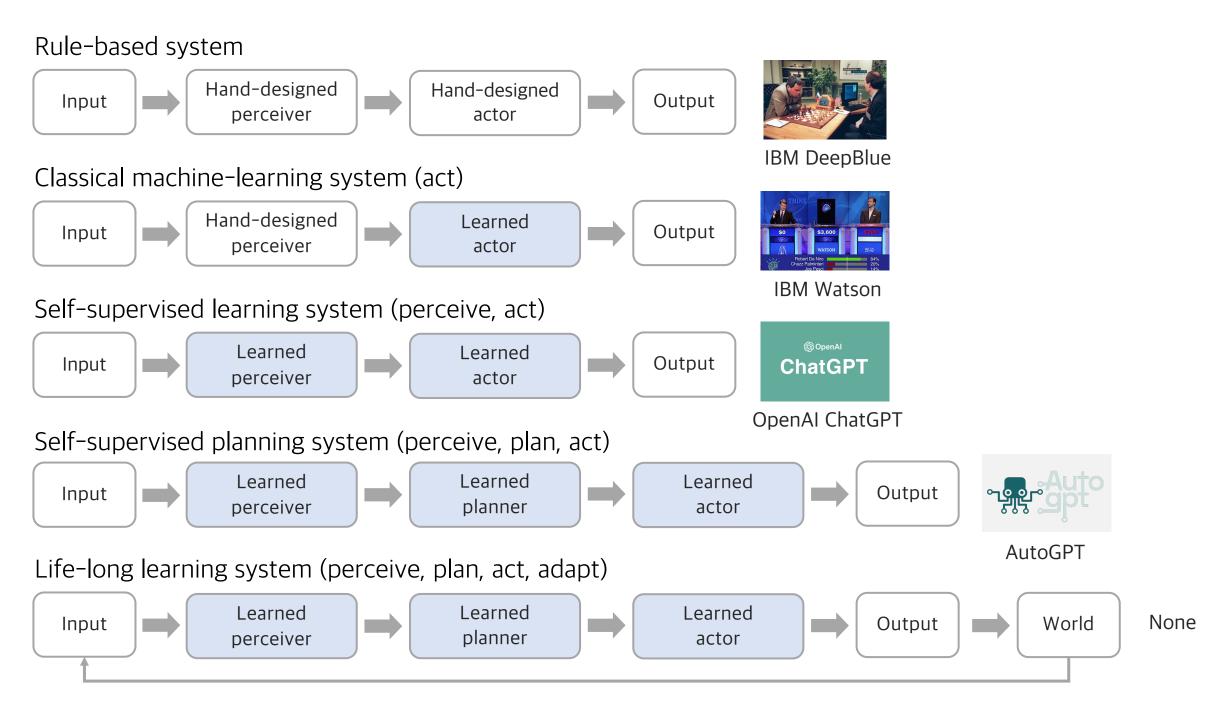








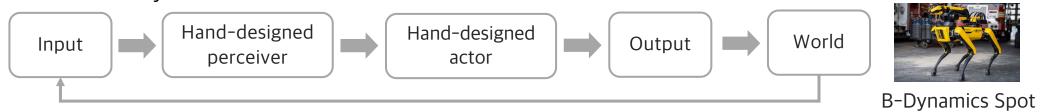
AutoGPT



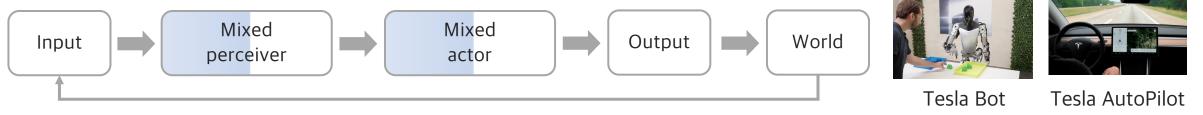
Where are we now for Intelligent Robot?



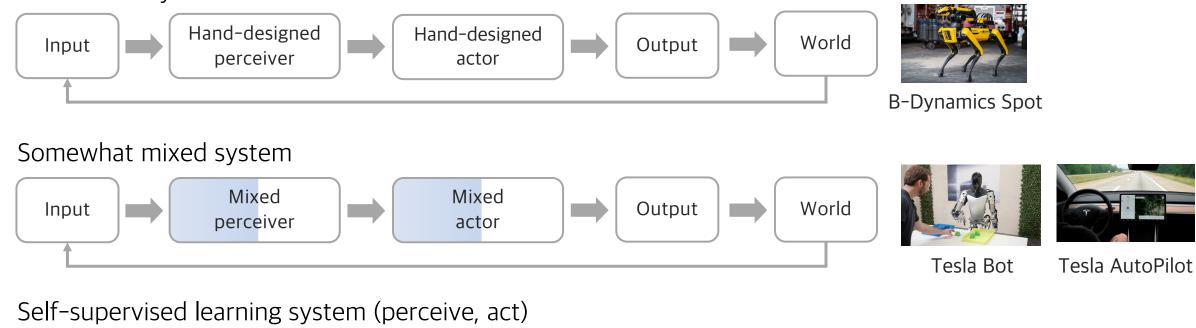
Rule-based system

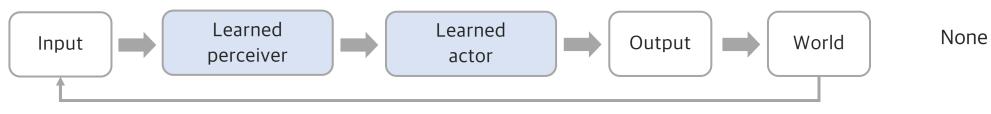


Somewhat mixed system

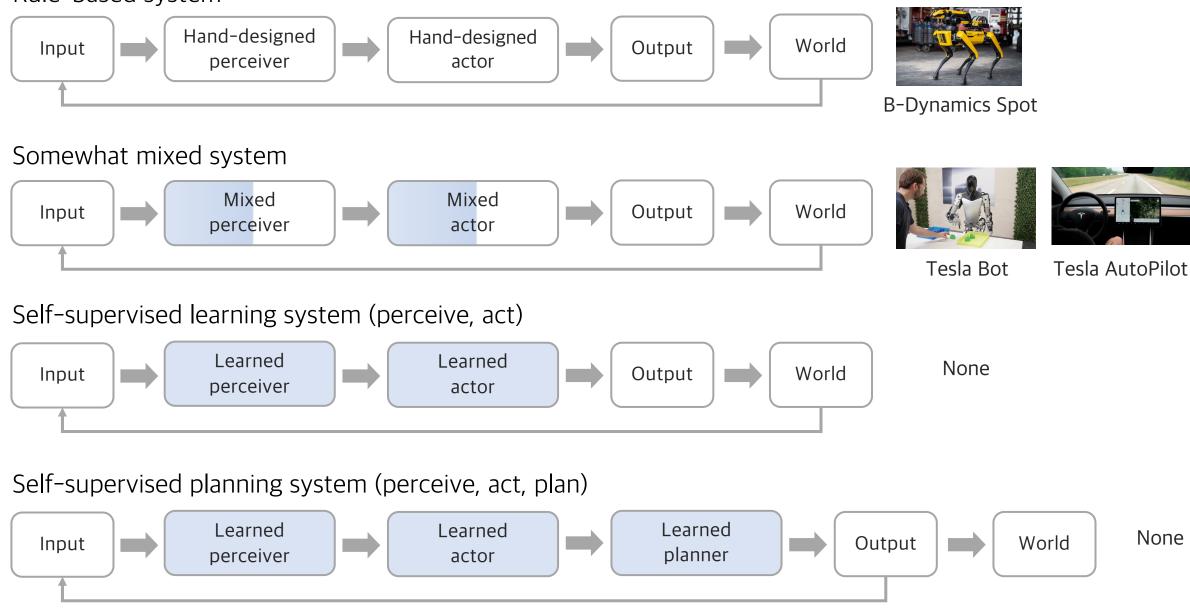


Rule-based system

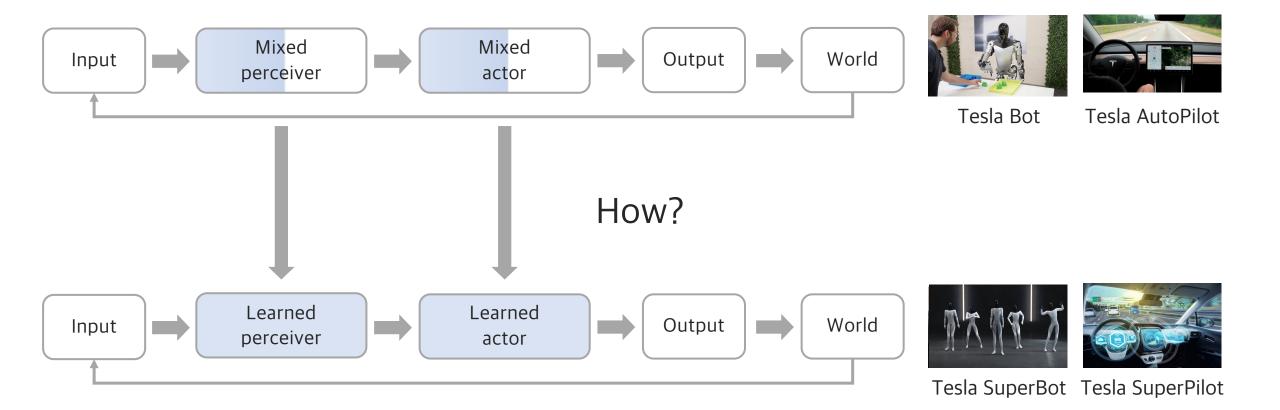




Rule-based system



How can we make Intelligent Robot?



Source of Training Robot

- Online Dataset
 - (+) explore the uncertain region.
 - (-) time-consuming, expensive to collect.

Source of Training Robot

- Online Dataset
 - (+) explore the uncertain region.
 - (-) time-consuming, expensive to collect.
- Offline Dataset
 - (+) cheaper than online dataset.
 - (-) distribution shift, cannot explore the uncertain region.

RT-X 1M robot trajectory

EGO-4D ego-centric video

Source of Training Robot

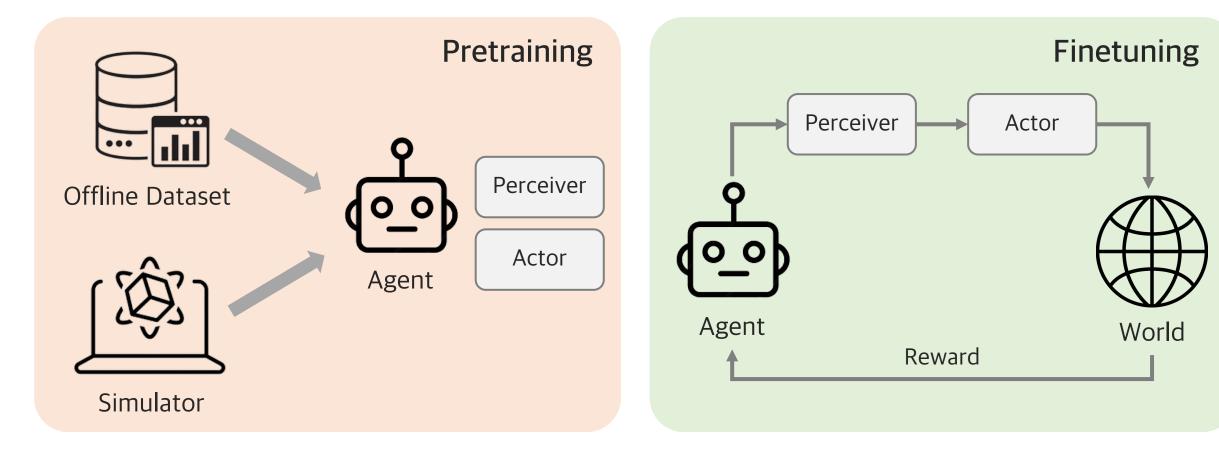
- Online Dataset
 - (+) explore the uncertain region.
 - (-) time-consuming, expensive to collect.
- Offline Dataset
 - (+) cheaper than online dataset.
 - (-) distribution shift, cannot explore the uncertain region.
- Simulator
 - (+) cheaper than online & offline dataset.
 - (-) larger distribution shift, hard to construct.

RT-X 1M robot trajectory

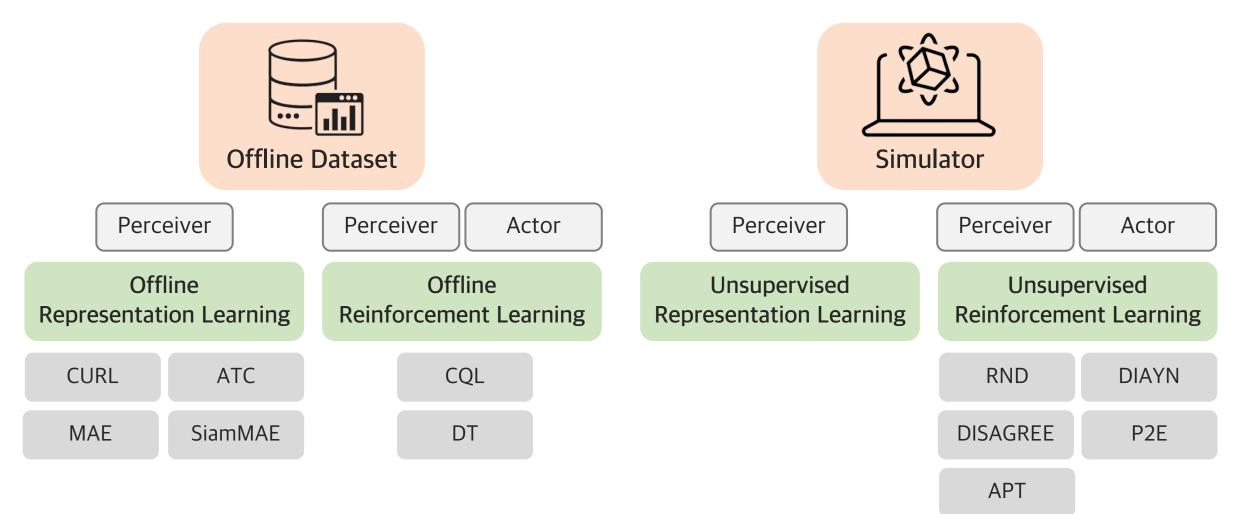
EGO-4D ego-centric video

Simulation City Waymo lssac Gym NVIDIA

Pretrain-then-Finetune paradigm

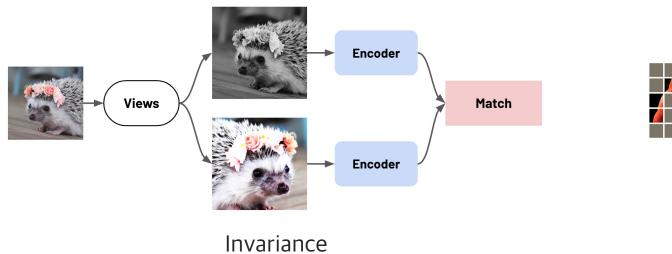


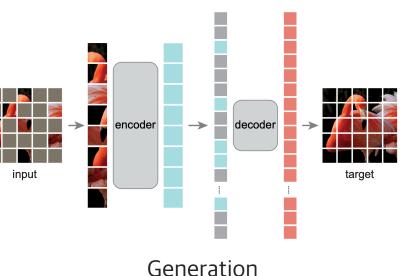
Taxonomy of Pretraining Algorithms



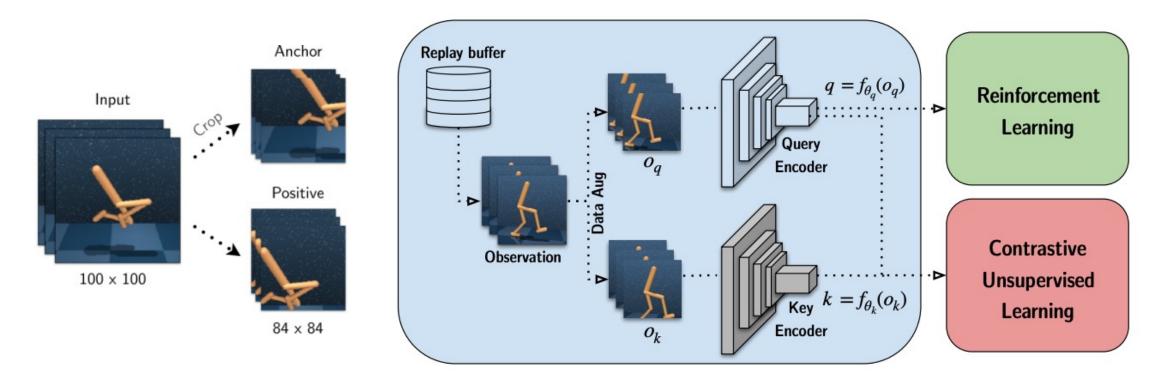
Pretraining from Offline Dataset

- Train effective Perceiver from offline dataset.
- Invariance vs Generation
 - Let X be data, Z(X) be representation.
 - Let I denotes mutual information of two random variables.
 - Invariance: Maximize $I(Z(X_1); Z(X_2))$ where X_1, X_2 are invariant data.
 - Generation: Maximize $I(Z(\overline{X}); X)$ where \overline{X} is perturbed image of X.





- **CURL** (Learning Spatial Invariance)
 - Maximize $I(Z(X_1); Z(X_2))$ where X_1, X_2 are same data with different augmentation.



CURL: Contrastive Unsupervised Representations for Reinforcement Learning, Srinivas et al. ICML, 2020.

- ATC (Learning Spatiotemporal Invariance) ullet
 - Maximize $I(Z(X_{t+k}); Z(X_t))$ where X_{t+k}, X_t are data from same trajectory. ۲

UL (without shift)

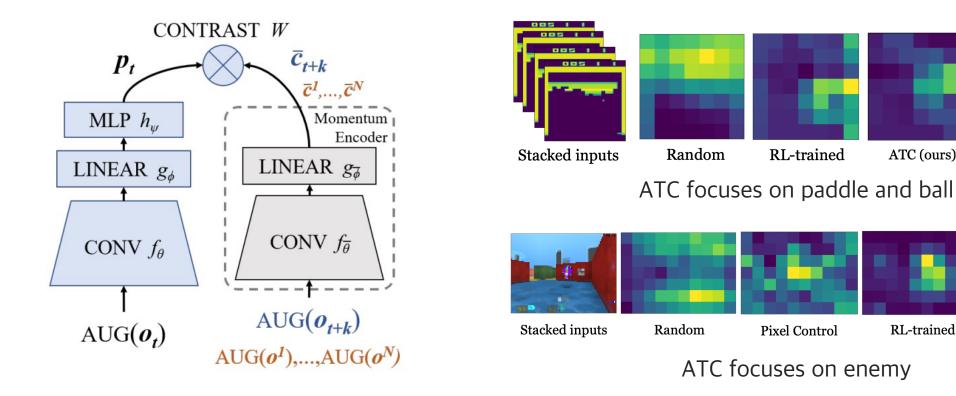
ATC (ours)

RL-trained

Pixel Control

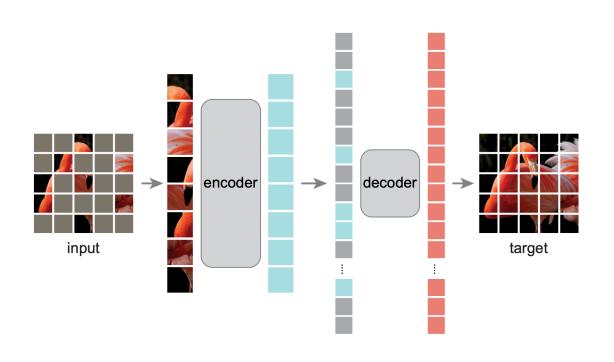
ATC (ours)

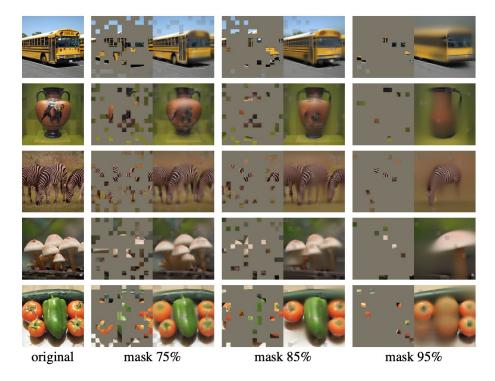
RL-trained



Decoupling Representation Learning from Reinforcement Learning, Stooke et al. ICML, 2021.

- MAE (Spatial Generation)
 - Maximize $I(Z(\overline{X}); X)$ where \overline{X} is perturbed image of X.



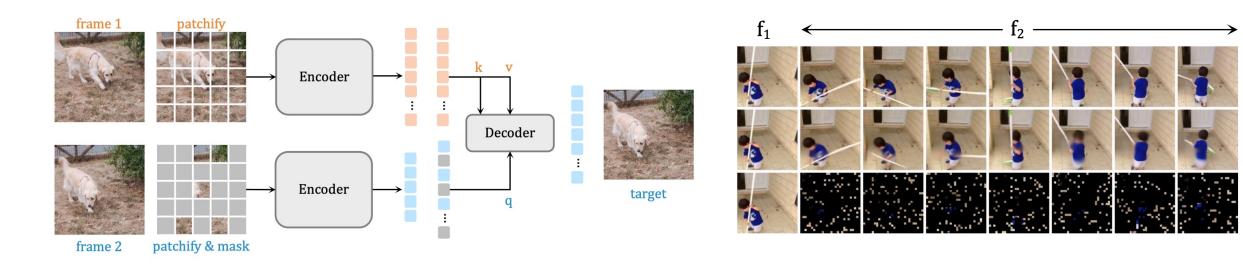


Reconstruction

Masked autoencoder (like BERT)

Masked Autoencoders Are Scalable Vision Learners, He et al. CVPR, 2022.

- **SiamMAE** (Spatiotemporal Generation)
 - Maximize $I(Z(\overline{X}_{t+k}); X_t)$ where \overline{X}_{t+k} is perturbed image of X_{t+k} .



Masked temporal autoencoder

Reconstruction

Siamese Masked Autoencoders, Gupta et al. NeurIPS, 2023.

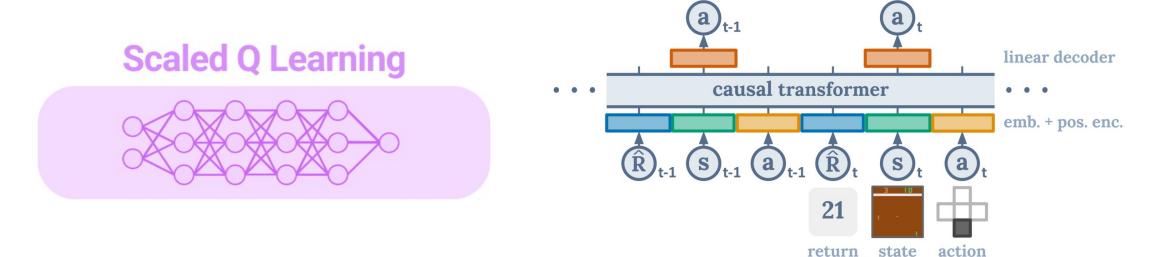
Offline Reinforcement Learning

Actor

Train effective Perceiver

from offline dataset.

• Q-learning vs Sequence Modeling



Q-Learning (Optimizing Bellman Equation)

Sequence Modeling

Offline Reinforcement Learning

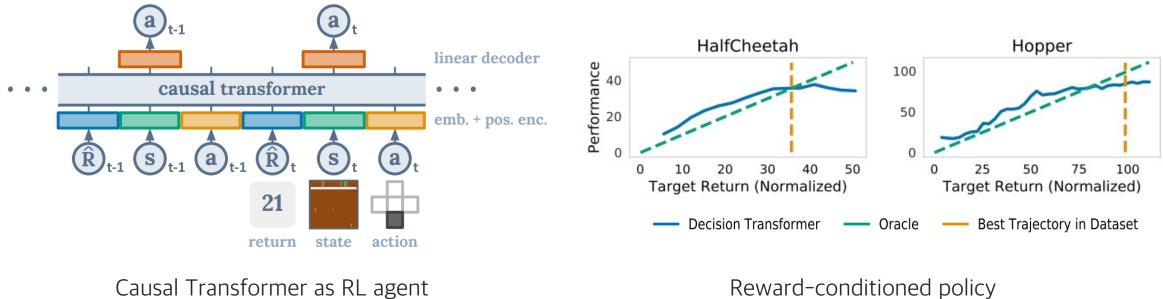
- CQL (Conservative Q-Learning)
 - Applying Q-learning to offline dataset will cause **extrapolation error**.
 - Extrapolation error brings overestimation biases.
 - Solve it by conservative Q-value estimation to unseen actions.

$$\hat{Q}_{\text{CQL}}^{\pi} := \arg\min_{Q} \alpha \cdot \left(\underbrace{\mathbb{E}_{\mathbf{s} \sim \mathcal{D}, \mathbf{a} \sim \mu(\mathbf{a}|\mathbf{s})}[Q(\mathbf{s}, \mathbf{a})]}_{\text{minimize Q-values}} - \underbrace{\mathbb{E}_{\mathbf{s} \sim \mathcal{D}, \mathbf{a} \sim \hat{\pi}_{\beta}(\mathbf{a}|\mathbf{s})}[Q(\mathbf{s}, \mathbf{a})]}_{\text{maximize Q-values under data}} \right) + \frac{1}{2} \underbrace{\mathbb{E}_{\mathbf{s}, \mathbf{a}, \mathbf{s}' \sim \mathcal{D}}\left[\left(Q - \hat{\boldsymbol{B}}^{\pi} Q\right)^{2}\right]}_{\text{standard Bellman error}}$$

$$Q(s, a) \int_{Action support} \frac{Q(s, a)}{Action support} \int_{Action support} \frac{Q(s, a)}{a} \int_{Action support} \frac{Q(s, a)}{a} \int_{Action support}} \frac{Q(s, a)}{a} \int_{Action support} \frac{Q(s, a)}{a} \int_{Action support} \frac{Q(s, a)}{a} \int_{Action support}} \frac{Q(s, a)}{a} \int_{Action support} \frac{Q(s, a)}{a} \int_{Action sup}$$

Offline Reinforcement Learning

- **DT** (Decision Transformer) ullet
 - Formulate RL as a big sequence modeling problem. ۲



Reward-conditioned policy

Decision Transformer: Reinforcement Learning via Sequence Modeling., Chen et al., NeurIPS 2021.

Pretraining from Simulator

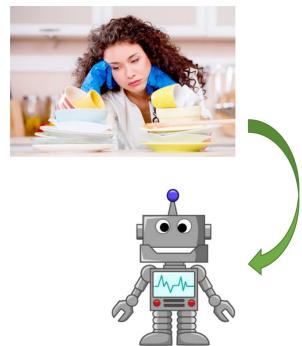
Train effective Percent

Perceiver

from simulator.

• Assumes we do not have an access to a pre-defined reward function.

Actor

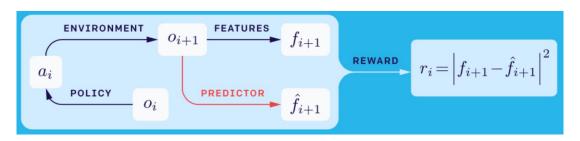


Berkely, CS 285: Deep Reinforcement Learning., Sergey Levine.

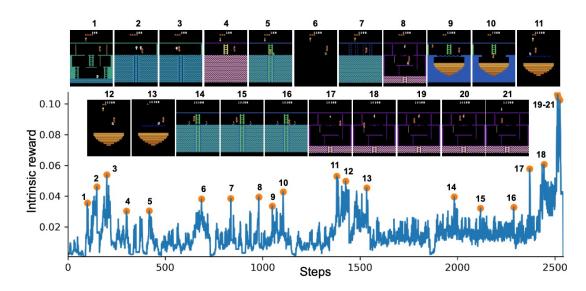
- Curiosity-driven exploration
 - Explore 'curious' states.
- Data coverage maximization
 - Maximize the 'coverage of data' collected through pretraining.
- Skill discovery
 - Learn task-agnostic skills.
- World model
 - Learn dynamics of the environment.

Pretraining in Deep Reinforcement Learning: A Survey, Xie. Arxiv preprint 2022.

- **RND** (Curiosity Driven Exploration)
 - Low prediction error: high reward

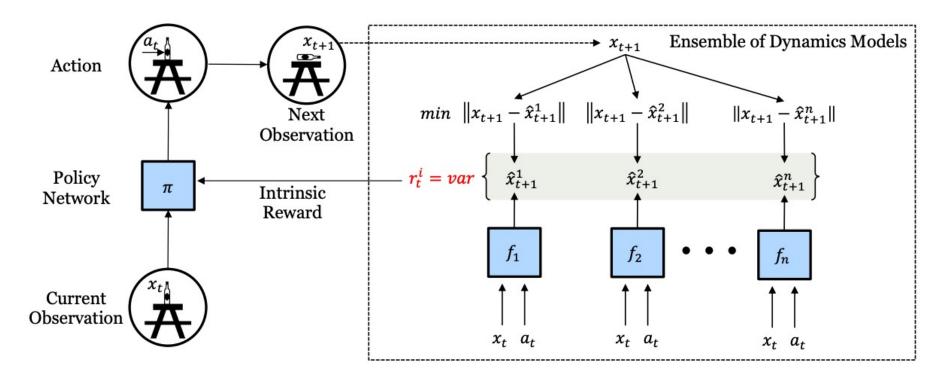


Prediction error as reward.

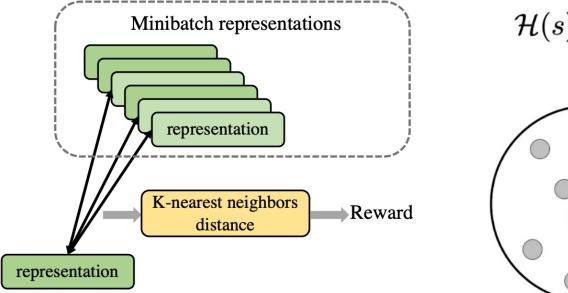


Spikes in reward correspond to meaningful events.

- **DISAGREE** (Curiosity Driven Exploration)
 - Disagreement among ensembles: high reward



- **APT** (Data-coverage maximization)
 - Maximize the state entropy $(H(d_{\pi}))$ in replay buffer

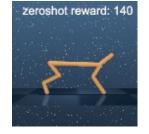


State entropy as reward

 $\mathcal{H}(s) = -\mathbb{E}_{s \sim p(s)} \left[\log p(s) \right]$ $\widehat{\mathcal{H}}(s) \propto \sum_{i} \log(||\mathbf{s}_{i} - \mathbf{s}_{i}^{k}||)$

Behavior From the Void: Unsupervised Active Pre-Training, Liu et al. NeurIPS 2021.

- **DIAYN** (Skill-Discovery)
 - Maximize the mutual information between state and skill I(s; z)



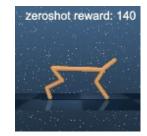


Move forward

Move backward

finetune

(ready for) flip

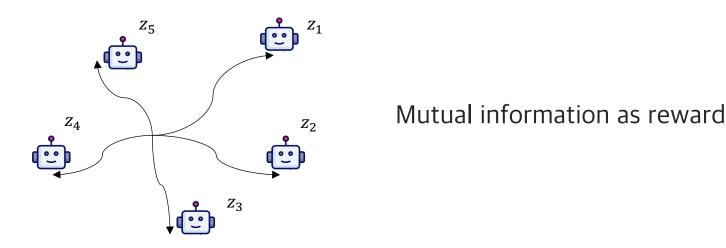


Move forward

Run forward

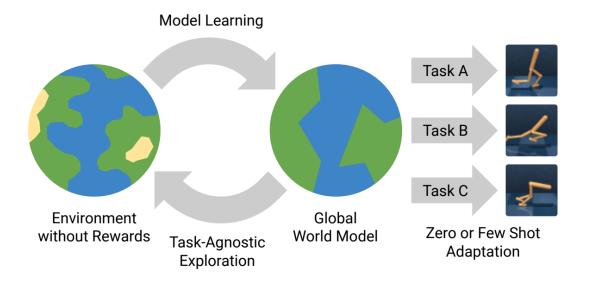
Diversity is all you need: learning skills without a reward function, Eysenbach et al. ICLR 2019.

- **DIAYN** (Skill-Discovery)
 - Maximize the mutual information between state and skill I(s; z)
 - 1. Sample skill $z \sim p(z)$
 - 2. Rollout trajectory $\tau \sim \pi(a|s, z)$
 - 3. Maximize mutual information between skill z and state s



Diversity is all you need: learning skills without a reward function, Eysenbach et al. ICLR 2019.

- Plan2Explore (World-Model)
 - Learn various components to represent the environment.
 - 1. Dynamics model $f(s_{t+1}|s_t, a_t)$
 - 2. (optional) reward predictor, image encoder/decoder, \cdots

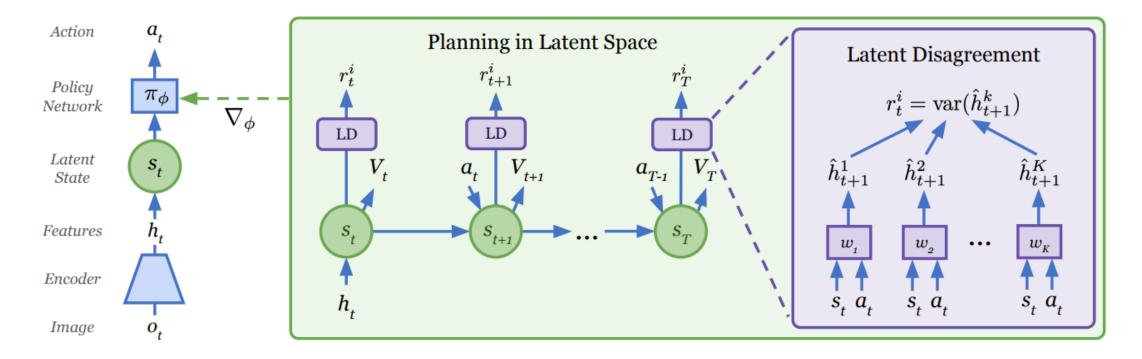


Pretraining: learn world model

Downstream task: now we can **plan** with world model

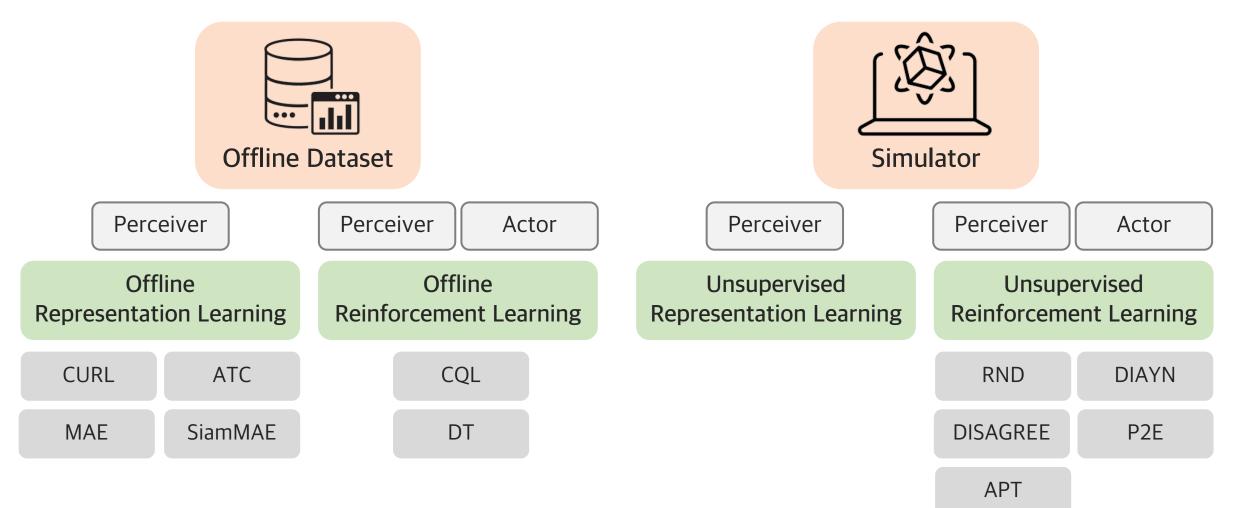
Planning to explore via self-supervised world models, Sekar et al. ICML 2020.

- Plan2Explore (World-Model)
 - Learn world model with disagreement



Planning to explore via self-supervised world models, Sekar et al. ICML 2020.

Summary: Let's Train Robot



Q & A