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ABSTRACT

Recent advances in CV and NLP have been largely driven by scaling up the num-
ber of network parameters, despite traditional theories suggesting that larger net-
works are prone to overfitting. These large networks avoid overfitting by integrat-
ing components that induce a simplicity bias, guiding models toward simple and
generalizable solutions. However, in deep RL, designing and scaling up networks
have been less explored. Motivated by this opportunity, we present SimBa, an
architecture designed to scale up parameters in deep RL by injecting a simplic-
ity bias. SimBa consists of three components: (i) an observation normalization
layer that standardizes inputs with running statistics, (ii) a residual feedforward
block to provide a linear pathway from the input to output, and (iii) a layer nor-
malization to control feature magnitudes. By scaling up parameters with SimBa,
the sample efficiency of various deep RL algorithms—including off-policy, on-
policy, and unsupervised methods—is consistently improved. Moreover, solely
by integrating SimBa architecture into SAC, it matches or surpasses state-of-the-
art deep RL methods with high computational efficiency across DMC, MyoSuite,
and HumanoidBench. These results demonstrate SimBa’s broad applicability and
effectiveness across diverse RL algorithms and environments.

Explore codes and videos at https://sonyresearch.github.io/simba

(a)

(b)

Figure 1: Benchmark Summary. (a) Sample Efficiency: SimBa improves sample efficiency across
various RL algorithms, including off-policy (SAC, TD-MPC2), on-policy (PPO), and unsupervised
RL (METRA). (b) Compute Efficiency: When applying SimBa with SAC, it matches or surpasses
state-of-the-art off-policy RL methods across 51 continuous control tasks, by only modifying the
network architecture and scaling up the number of network parameters.
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1 INTRODUCTION

Scaling up neural network sizes has been a key driver of recent advancements in computer vision
(CV) (Dehghani et al., 2023) and natural language processing (NLP) (Google et al., 2023; Achiam
et al., 2023). By increasing the number of parameters, neural networks gain enhanced expressivity,
enabling them to cover diverse functions and discover effective solutions that smaller networks might
miss. However, this increased capacity also heightens the risk of overfitting, as larger networks can
fit intricate patterns in the training data that do not generalize well to unseen data.

Despite this risk of overfitting, empirical evidence shows that neural networks tend to converge
toward simpler functions that generalize effectively (Kaplan et al., 2020; Nakkiran et al., 2021).
This phenomenon is attributed to a simplicity bias inherent in neural networks, where standard opti-
mization algorithms and architectural components guide highly expressive models toward solutions
representing simple, generalizable functions (Shah et al., 2020; Berchenko, 2024). For instance, gra-
dient noise in stochastic gradient descent prevents models from converging on sharp local minima,
helping them avoid overfitting (Chizat & Bach, 2020; Gunasekar et al., 2018; Pesme et al., 2021).
Architectural components such as ReLU activations (Hermann et al., 2024), layer normalization (Ba
et al., 2016), and residual connections (He et al., 2020) are also known to amplify simplicity bias.
These components influence the types of functions that neural networks represent at initialization,
where networks that represent simpler function at initialization are more likely to converge to simple
functions (Valle-Perez et al., 2018; Mingard et al., 2019; Teney et al., 2024).

While scaling up network parameters and leveraging simplicity bias have been successfully applied
in CV and NLP, these principles have been underexplored in deep reinforcement learning (RL),
where the focus has primarily been on algorithmic advancements (Hessel et al., 2018; Hafner et al.,
2023; Fujimoto et al., 2023; Hansen et al., 2023). Motivated by this opportunity, we introduce the
SimBa network, a novel architecture that explicitly embeds simplicity bias to effectively scale up
parameters in deep RL. SimBa comprises of three key components: (i) an observation normalization
layer that standardizes inputs by tracking the mean and variance of each dimension, reducing over-
fitting to high-variance features (Andrychowicz et al., 2020); (ii) a pre-layer normalization residual
feedforward block (Xiong et al., 2020), which maintains a direct linear information pathway from
input to output and applies non-linearity only when necessary; and (iii) a post-layer normalization
before the output layer to stabilize activations, ensuring more reliable policy and value predictions.

To verify whether SimBa amplifies simplicity bias, we compared it against the standard MLP ar-
chitecture often employed in deep RL. Following Teney et al. (2024), we measured simplicity bias
by (i) sampling random inputs from a uniform distribution; (ii) generating network outputs; and
(iii) performing Fourier decomposition on these outputs. A smaller sum of the Fourier coefficients
indicates that the neural network represents a low-frequency function, signifying greater simplicity.
We define the simplicity score as the inverse of this sum, meaning a higher score corresponds to a
stronger simplicity bias. As illustrated in Figure 2.(a), our analysis revealed that SimBa has a higher
simplicity score than the MLP (Further details are provided in Section 2).

To evaluate the benefit of leveraging simplicity bias
on network scaling, we compared the performance
of Soft Actor-Critic (Haarnoja et al., 2018, SAC)
using both MLP and our SimBa architecture across
3 humanoid tasks from DMC benchmark (Tassa
et al., 2018). We increased the width of both ac-
tor and critic networks, scaling from 0.1 to 17 mil-
lion parameters. As shown in Figure 2.(b), SAC
with MLP experiences performance degradation
as the number of parameters increases. In con-
trast, SAC with the SimBa network consistently
improves its performance as the number of param-
eter increases, highlighting the value of embedding
simplicity bias when scaling deep RL networks.

Figure 2: (a) SimBa exhibits higher simplic-
ity bias than MLP. (b) SAC with SimBa im-
proves its performance with increased param-
eters, whereas SAC with MLP degrades it.
Each standard deviation is 95% CI.

To further evaluate SimBa’s versatility, we applied it to various RL algorithms by only changing the
network architecture and scaling up parameters. The algorithms included off-policy (SAC (Haarnoja
et al., 2018), TD-MPC2 (Hansen et al., 2023)), on-policy model-free (PPO (Schulman et al., 2017)),
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and unsupervised RL (METRA (Park et al., 2023)). As illustrated in Figure 1.(a), SimBa consis-
tently enhances the sample efficiency of these algorithms. Furthermore, as shown in Figure 1.(b),
when SimBa is integrated into SAC, it matches or surpasses state-of-the-art off-policy methods
across 51 tasks in DMC, MyoSuite (Caggiano et al., 2022), and HumanoidBench (Sferrazza et al.,
2024). Despite the increased number of parameters, SAC with SimBa remains computationally effi-
cient because it does not employ any computationally intensive components such as self-supervised
objectives (Fujimoto et al., 2023), planning (Hansen et al., 2023), or replay ratio scaling (Nauman
et al., 2024), which state-of-the-art methods rely on to achieve high performance.

2 PRELIMINARY

Simplicity bias refers to the tendency of neural networks to prioritize learning simpler patterns over
capturing intricate details (Shah et al., 2020; Berchenko, 2024). In this section, we introduce metrics
to quantify simplicity bias; in-depth definitions are provided in Appendix A.

2.1 MEASURING FUNCTION COMPLEXITY

We begin by defining a complexity measure c : F → [0,∞) to quantify the complexity of functions
in F = {f |f : X → Y} where X ⊆ Rn denote the input space and Y ⊆ Rm the output space.

Traditional complexity measures, such as the Vapnik–Chervonenkis dimension (Blumer et al.,
1989) and Rademacher complexity (Bartlett & Mendelson, 2002), are well-established but of-
ten intractable for deep neural networks. Therefore, we follow Teney et al. (2024) and adopt
Fourier analysis as our primary complexity measure. Given f(x) := (2π)d/2

∫
f̃(k) eik·xdk where

f̃(k) :=
∫
f(x) e−ik·xdx is the Fourier transform, we perform a discrete Fourier transform by uni-

formly discretizing the frequency domain, k ∈ {0, 1, . . . ,K}. The value of K is chosen by the
Nyquist-Shannon limit (Shannon, 1949) to ensure accurate function representation. Our complexity
measure c(f) is then computed as the frequency-weighted average of the Fourier coefficients:

c(f) = ΣK
k=0f̃(k) · k / ΣK

k=0f̃(k). (1)
Intuitively, larger c(f) indicates higher complexity due to a dominance of high-frequency compo-
nents such as rapid amplitude changes or intricate details. Conversely, lower c(f) implies a larger
contribution from low-frequency components, indicating a lower complexity function.

2.2 MEASURING SIMPLICITY BIAS

In theory, simplicity bias can be measured by evaluating the complexity of the function to which the
network converges after training. However, directly comparing simplicity bias across different archi-
tectures after convergence is challenging due to the randomness of the non-stationary optimization
process, especially in RL, where the data distribution changes continuously.

Empirical studies suggest that the initial complexity of a network strongly correlates with the com-
plexity of the functions it converges to during training (Valle-Perez et al., 2018; De Palma et al.,
2019; Mingard et al., 2019; Teney et al., 2024). Therefore, for a given network architecture f with
an initial parameter distribution Θ0, we define the simplicity bias score s(f) : F → (0,∞) as:

s(f) ≈ Eθ∼Θ0

[
1

c(fθ)

]
(2)

where fθ denotes the network architecture f parameterized by θ.

This measure indicates that networks with lower complexity at initialization are more likely to ex-
hibit a higher simplicity bias, thereby converging to simpler functions during training.

3 RELATED WORK

3.1 SIMPLICITY BIAS

Initially, simplicity bias was mainly attributed to the implicit regularization effects of the stochastic
gradient descent (SGD) optimizer (Soudry et al., 2018; Gunasekar et al., 2018; Chizat & Bach, 2020;
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Figure 3: SimBa architecture. The network integrates Running Statistics Normalization (RSNorm),
residual feedforward blocks, and post-layer normalization to embed simplicity bias into deep RL.

Pesme et al., 2021). During training, SGD introduces noise which prevents the model from converg-
ing to sharp minima, guiding it toward flatter regions of the loss landscape (Wu et al., 2022). Such
flatter minima are associated with functions of lower complexity, thereby improving generalization.

However, recent studies suggest that simplicity bias is also inherent in the network architecture it-
self (Valle-Perez et al., 2018; Mingard et al., 2019). Architectural components such as normalization
layers, ReLU activations (Hermann et al., 2024), and residual connections (He et al., 2020) promote
simplicity bias by encouraging smoother, less complex functions. Fourier analysis has shown that
these components help models prioritize learning low-frequency patterns, guiding optimization to-
ward flatter regions that generalize better (Teney et al., 2024). Consequently, architectural design
plays a crucial role in favoring simpler solutions, enabling the use of overparameterized networks.

3.2 DEEP REINFORCEMENT LEARNING

For years, deep RL has largely focused on algorithmic improvements to enhance sample efficiency
and generalization. Techniques like Double Q-learning (Van Hasselt et al., 2016; Fujimoto et al.,
2018), and Distributional RL (Dabney et al., 2018) have improved the stability of value estima-
tion by reducing overestimation bias. Regularization strategies—including periodic reinitialization
(Nikishin et al., 2022; Lee et al., 2024), Layer Normalization (Lee et al., 2023; Gallici et al., 2024),
Batch Normalization (Bhatt et al., 2024), and Spectral Normalization (Gogianu et al., 2021)—have
been employed to prevent overfitting and enhance generalization. Incorporating self-supervised ob-
jectives with model-based learning (Fujimoto et al., 2023; Hafner et al., 2023; Hansen et al., 2023)
has further improved representation learning and sample efficiency.

Despite these advances, scaling up network architectures in deep RL remains underexplored. While
larger models improved performance in supervised learning by leveraging simplicity bias, this prin-
ciple has not been fully explored in RL. Several recent studies have attempted to scale up network
sizes—through ensembling (Chen et al., 2021; Obando-Ceron et al., 2024), widening (Schwarzer
et al., 2023), and deepening networks (Bjorck et al., 2021; Nauman et al., 2024). However, they
often rely on computationally intensive layers like spectral normalization (Bjorck et al., 2021) or
require sophisticated training protocols (Nauman et al., 2024), limiting their applicability.

In this work, we aim to design an architecture that amplifies simplicity bias, enabling us to effectively
scale up parameters in RL, independent of using any other sophisticated training protocol.

4 SIMBA

This section introduces the SimBa network, an architecture designed to embed simplicity bias
into deep RL. The architecture comprises Running Statistics Normalization, Residual Feedforward
Blocks, and Post-Layer Normalization. By amplifying the simplicity bias, SimBa allows the model
to avoid overfitting for highly overparameterized configurations.

Running Statistics Normalization (RSNorm). First, RSNorm standardizes input observations by
tracking the running mean and variance of each input dimension during training, preventing features
with disproportionately large values from dominating the learning process.

Given an input observation ot ∈ Rdo at timestep t, we update the running observation mean µt ∈
Rdo and variance σ2

t ∈ Rdo as follows:

µt = µt−1 +
1

t
δt, σ2

t =
t− 1

t
(σ2

t−1 +
1

t
δ2t ) (3)

where δt = ot − µt−1 and do denotes the dimension of the observation.
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Once µt and σ2
t are computed, each input observation ot is normalized as:

ōt = RSNorm(ot) =
ot − µt√
σ2
t + ϵ

(4)

where ōt ∈ Rdo is the normalized output, and ϵ is a small constant for numerical stability.

While alternative observation normalization methods exist, RSNorm consistently demonstrates su-
perior performance. A comprehensive comparison is provided in Section 7.1.

Residual Feedforward Block. The normalized observation ōi is first embedded into a dh-
dimensional vector using a linear layer:

xl
t = Linear(ōt). (5)

At each block, l ∈ {1, ..., L}, the input xl
t passes through a pre-layer normalization residual feed-

forward block, introducing simplicity bias by allowing a direct linear pathway from input to output.
This direct linear pathway enables the network to pass the input unchanged unless non-linear trans-
formations are necessary. Each block is defined as:

xl+1
t = xl

t + MLP(LayerNorm(xl
t)). (6)

Following Vaswani (2017), the MLP is structured with an inverted bottleneck, where the hidden
dimension is expanded to 4 · dh and a ReLU activation is applied between the two linear layers.

Post-Layer Normalization. To ensure that activations remain on a consistent scale before predicting
the policy or value function, we apply layer normalization after the final residual block:

zt = LayerNorm(xL
t ). (7)

The normalized output zt is then processed through a linear layer, generating predictions for the
actor’s policy or the critic’s value function.

5 ANALYZING SIMBA

In this section, we analyze whether each component of SimBa amplifies simplicity bias and allows
scaling up parameters in deep RL. We conducted experiments on challenging environments in DMC
involving Humanoid and Dog, collectively referred to as DMC-Hard. Throughout this section, we
used Soft Actor Critic (Haarnoja et al., 2018, SAC) as the base algorithm.

5.1 ARCHITECTURAL COMPONENTS

To quantify simplicity bias in SimBa, we use Fourier analysis as described in Section 2. For each
network f , we estimate the simplicity bias score s(f) by averaging over 100 random initializations
θ ∼ Θ0. Following Teney et al. (2024), the input space X = [−100, 100]2 ⊂ R2 is divided into a
grid of 90,000 points, and the network outputs a scalar value for each input which are represented
as a grayscale image. By applying the discrete Fourier transform to these outputs, we compute the
simplicity score s(f) defined in Equation 2 (see Appendix B for further details).

Figure 4.(a) shows that SimBa’s key compo-
nents—such as residual connections and layer nor-
malization—increase the simplicity bias score s(f),
biasing the architecture toward simpler functional
representations at initialization. When combined,
these components induce a stronger preference
for low-complexity functions (i.e., high simplicity
score) than when used individually.

Figure 4.(b) reveals a clear relationship between
simplicity bias and performance: architectures with
higher simplicity bias scores lead to enhanced per-
formance. Specifically, compared to the MLP,
adding residual connections increases the average
return by 50 points, adding layer normalization adds
150 points, and combining all components results in
a substantial improvement of 550 points.

5.8 6.0 6.2 6.4
Simba
MLP + PostLN
MLP + PreLN
MLP + Residual
MLP + RSNorm
MLP

(a) Simplicity Score ( )

200 400 600

(b) Average Return ( )

Figure 4: Component Analysis. (a) Sim-
plicity bias scores estimated via Fourier anal-
ysis. Mean and 95% CI are computed over
100 random initializations. (b) Average re-
turn in DMC-Hard at 1M steps. Mean and
95% CI over 10 seeds, using the SAC al-
gorithm. Stronger simplicity bias correlates
with higher returns for overparameterized
networks.
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5.2 COMPARISON WITH OTHER ARCHITECTURES

To assess SimBa’s scalability, we compared it to BroNet (Nauman et al., 2024), SpectralNet (Bjorck
et al., 2021), and MLP. Detailed descriptions of each architecture are provided in Appendix B.

The key differences between SimBa and other architectures lie in the placement of components
that promote simplicity bias. SimBa maintains a direct linear residual pathway from input to out-
put, applying non-linearity exclusively through residual connections. In contrast, other architectures
introduce non-linearities within the input-to-output pathway, increasing functional complexity. Ad-
ditionally, SimBa employs post-layer normalization to ensure consistent activation scales across all
hidden dimensions, reducing variance in policy and value predictions. Conversely, other architec-
tures omit normalization before the output layer, which can lead to high variance in their predictions.

To ensure that performance differences were attributable to architectural design choices rather than
varying input normalization strategies, we uniformly applied RSNorm as the input normalization
method across all models. Additionally, our investigation primarily focused on scaling the critic
network’s hidden dimension, as scaling the actor network showed limited benefits (see Section7.2).

As illustrated in Figure 5.(a), SimBa achieves
the highest simplicity bias score compared to
the experimented architectures, demonstrating its
strong preference for simpler solutions. In Fig-
ure 5.(b), while the MLP failed to scale with in-
creasing network size, BroNet, SpectralNet, and
SimBa all showed performance improvements as
their networks scaled up.

Importantly, the scalability of each architecture
was strongly correlated with its simplicity bias
score, where a higher simplicity bias led to better
scalability. SimBa demonstrated the best scala-
bility, supporting the hypothesis that simplicity
bias is a key factor in scaling deep RL models.

Figure 5: Architecture Comparison. (a)
SimBa consistently exhibits a higher simplic-
ity bias score. (b) SimBa demonstrates superior
scaling performance in terms of average return
for DMC-Hard compared to the other architec-
tures. The results are from 5 random seeds.

6 EXPERIMENTS

This section evaluates SimBa’s applicability across various deep RL algorithms and environments.
For each baseline, we either use the authors’ reported results or run experiments using their rec-
ommended hyperparameters. Detailed descriptions of the environments used in our evaluations are
provided in Appendix F. In addition, we also include learning curves and final performance for each
task in Appendix H and I, along with hyperparameters used in our experiments in Appendix G.

6.1 OFF-POLICY RL

Experimental Setup. We evaluate the algorithms on 51 tasks across three benchmarks: DMC (Tassa
et al., 2018), MyoSuite (Caggiano et al., 2022), and HumanoidBench (Sferrazza et al., 2024). The

(a) DMC (b) MyoSuite (c) HumanoidBench (d) Craftax

Figure 6: Environment Visualizations. SimBa is evaluated across four diverse benchmark envi-
ronments: DMC, MyoSuite, and HumanoidBench, which feature complex locomotion and manipu-
lation tasks, and Craftax, which introduces open-ended tasks with varying complexity.
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Figure 8: Off-policy RL Benchmark. Average episode return for DMC and HumanoidBench and
average success rate for MyoSuite across 51 continuous control tasks. SimBa (with SAC) achieves
high computational efficiency by only changing the network architecture.

DMC tasks are further categorized into DMC-Easy&Medium and DMC-Hard based on complexity.
We vary the number of training steps per benchmark according to the complexity of the environment:
500K for DMC-Easy&Medium, 1M for DMC-Hard and MyoSuite, and 2M for HumanoidBench.

Baselines. We compare SimBa against state-of-the-art off-policy RL algorithms. (i) SAC (Haarnoja
et al., 2018), an actor-critic algorithm based on maximum entropy RL; (ii) DDPG (Lillicrap, 2015), a
deterministic policy gradient algorithm with deep neural networks; (iii) TD7 (Fujimoto et al., 2023),
an enhanced version of TD3 incorporating state-action representation learning; (iv) BRO (Nauman
et al., 2024), which scales the critic network of SAC while integrating distributional Q-learning, op-
timistic exploration, and periodic resets. For a fair comparison, we use BRO-Fast, which is the most
computationally efficient version; (v) TD-MPC2 (Hansen et al., 2023), which combines trajectory
planning with long-return estimates using a learned world model; and (vi) DreamerV3 (Hafner et al.,
2023), which learns a generative world model and optimizes a policy via simulated rollouts.

Integrating SimBa into Off-Policy RL. The SimBa ar-
chitecture is algorithm-agnostic and can be applied to any
deep RL method. To demonstrate its applicability, we in-
tegrate SimBa into two model-free (SAC, DDPG) and one
model-based algorithm (TD-MPC2), evaluating their per-
formance on the DMC-Hard benchmark. For SAC and
DDPG, we replace the standard MLP-based actor-critic
networks with SimBa. For TD-MPC2, we substitute the
shared encoder from MLP to SimBa while matching the
number of parameters as the original implementation.

Figure 7 shows consistent benefits across all algorithms:
integrating SimBa increased the average return by 570,
480, and, 170 points for SAC, DDPG, and TD-MPC2
respectively. These results demonstrate that scaling up
parameters with a strong simplicity bias significantly en-
hances performance in deep RL.

200 400 600 800

TD-MPC2 + SimBa
TD-MPC2
DDPG + SimBa
DDPG
SAC + SimBa
SAC

Average Return ( )

Figure 7: Off-Policy RL with SimBa.
Replacing MLP with SimBa leads to
substantial performance improvements
across various off-policy RL methods.
Mean and 95% CI are averaged over 10
seeds for SAC and DDPG, and 3 seeds
for TD-MPC2 in DMC-Hard.

Comparisons with State-of-the-Art Methods. Here, we compare SAC + SimBa against state-of-
the-art off-policy deep RL algorithms, which demonstrated the most promising results in previous
experiments. Throughout this section, we refer to SAC + SimBa as SimBa.

Figure 8 presents the results, where the x-axis represents computation time using an RTX 3070 GPU,
and the y-axis denotes performance. Points in the upper-left corner ( ) indicate higher compute
efficiency. Here, SimBa consistently outperforms most baselines across various environments while
requiring less computational time. The only exception is TD-MPC2 on HumanoidBench; however,
TD-MPC2 requires 2.5 times the computational resources of SimBa to achieve better performance,
making SimBa the most efficient choice overall.

The key takeaway is that SimBa achieves these remarkable results without the bells and whis-
tles often found in state-of-the-art deep RL algorithms. It is easy to implement, which only re-
quires modifying the network architecture into SimBa without additional changes to the loss func-
tions (Schwarzer et al., 2020; Hafner et al., 2023) or using domain-specific regularizers (Fujimoto
et al., 2023; Nauman et al., 2024). Its effectiveness stems from an architectural design that leverages
simplicity bias and scaling up the number of parameters, thereby maximizing performance.
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Figure 9: Impact of Input Dimension. Average episode return for DMC tasks plotted against
increasing state dimensions. Results show that the benefits of using SimBa increase with higher
input dimensions, effectively alleviating the curse of dimensionality.

Figure 10: On-policy RL with SimBa. Average return of achievements and task success rate for
three different tasks comparing PPO + SimBa and PPO on Craftax. Integrating SimBa enables
effective learning of complex behaviors.

Impact of Input Dimension. To further identify in which cases SimBa offers significant benefits,
we analyze its performance across DMC environments with varying input dimensions. As shown in
Figure 9, the advantage of SimBa becomes more pronounced as input dimensionality increases. We
hypothesize that higher-dimensional inputs exacerbate the curse of dimensionality, and the simplic-
ity bias introduced by SimBa effectively mitigates overfitting in these high-dimensional settings.

6.2 ON-POLICY RL

Experimental Setup. We conduct our on-policy RL experiments in Craftax (Matthews et al., 2024),
an open-ended environment inspired by Crafter (Hafner, 2022) and NetHack (Küttler et al., 2020).
Craftax poses a unique challenge with its open-ended structure and compositional tasks. Following
Matthews et al. (2024), we use Proximal Policy Optimization (Schulman et al., 2017, PPO) as the
baseline algorithm. When integrating SimBa with PPO, we replace the standard MLP-based actor-
critic networks with SimBa and train both PPO and PPO + SimBa on 1024 parallel environments
for a total of 1 billion environment steps.

Results. As illustrated in Figure 10, integrating SimBa into PPO significantly enhances performance
across multiple complex tasks. With SimBa, the agent learns to craft iron swords and pickaxes
more rapidly, enabling the early acquisition of advanced tools. Notably, by using these advanced
tools, the SimBa-based agent successfully defeats challenging adversaries like the Orc Mage using
significantly fewer time steps than an MLP-based agent. These improvements arise solely from the
architectural change, demonstrating the effectiveness of the SimBa approach for on-policy RL.

6.3 UNSUPERVISED RL

Experimental Setup. In our unsupervised RL study, we incorporate SimBa for online skill dis-
covery, aiming to identify diverse behaviors without relying on task-specific rewards. We focus our
experiments primarily on METRA (Park et al., 2023), which serves as the state-of-the-art algorithm
in this domain. We evaluate METRA and METRA with SimBa on the Humanoid task from DMC,
running 10M environment steps. For a quantitative comparison, we adopt state coverage as our main
metric. Coverage is measured by discretizing the x and y axes into a grid and counting the number of
grid cells covered by the learned behaviors at each evaluation epoch, following prior literature (Park
et al., 2023; Kim et al., 2024a;b).
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Results. As illustrated in Figure 1.(a) and 11, inte-
grating SimBa into METRA significantly enhances
state coverage on the Humanoid task. The high-
dimensional input space makes it challenging for
METRA to learn diverse skills. By injecting simplic-
ity bias to manage high input dimensions and scal-
ing up parameters to facilitate effective diverse skill
acquisition, SimBa effectively leads to improved ex-
ploration and broader state coverage.

Figure 11: URL with Simba. Integrating
SimBa to METRA enhances state coverage.

7 ABLATIONS

We conducted ablations on DMC-Hard with SAC + SimBa, running 5 seeds for each experiment.

7.1 OBSERVATION NORMALIZATION

A key factor in SimBa’s success is using RSNorm for observation normalization. To validate its ef-
fectiveness, we compare 5 alternative methods: (i) Layer Normalization (Ba et al., 2016); (ii) Batch
Normalization (Ioffe & Szegedy, 2015); (iii) Env Wrapper RSNorm, which tracks running statis-
tics for each dimension, normalizes observations upon receiving from the environment, and stores
them in the replay buffer; (iv) Initial N Steps: fixed statistics derived from initially collected tran-
sition samples, where we used N = 5, 000; and (v) Oracle Statistics, which rely on pre-computed
statistics from previously collected expert data.

As illustrated in Figure 12, layer normalization and batch
normalization offer little to no performance gains. While
the env-wrapper RSNorm is somewhat effective, it falls short
of RSNorm’s performance. Although widely used in deep
RL frameworks (Dhariwal et al., 2017; Hoffman et al., 2020;
Raffin et al., 2021), the env-wrapper introduces inconsisten-
cies in off-policy settings by normalizing samples with dif-
ferent statistics based on their collection time. This causes
identical observations to be stored with varying values in
the replay buffer, reducing learning consistency. Fixed ini-
tial statistics also show slightly worse performance than
RSNorm, potentially due to their inability to adapt to the
evolving dynamics during training. Overall, only RSNorm
matched the performance of oracle statistics, making it the
most practical observation normalization choice for deep RL.

300 450 600 750

RSNorm
Oracle Stats
Initial N Steps
Env Wrapper
BatchNorm
LayerNorm
None

Average Return ( )

Figure 12: Obs Normalization.
RSNorm consistently outperforms
alternative normalization methods.
Mean and 95% CI over 5 seeds.

7.2 SCALING THE NUMBER OF PARAMETERS

Here, we investigate scaling parameters in the actor-critic architecture with SimBa by focusing on
two aspects: (i) scaling the actor versus the critic network, and (ii) scaling network width versus
depth. For width scaling, the actor and critic depths are set to 1 and 2 blocks, respectively. For depth
scaling, the actor and critic widths are fixed at 128 and 512, respectively, following our default setup.

As illustrated in Figure 13, scaling up the width
or depth of the critic ( ) generally improves per-
formance, while scaling up the actor’s width or
depth ( ) tends to reduce performance. This
contrast suggests that the target complexity of
the actor may be lower than that of the critic,
where scaling up the actor’s parameters might be
ineffective. These findings align with previous
study (Nauman et al., 2024), which highlights
the benefits of scaling up the critic while showing
limited advantages in scaling up the actor.
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Figure 13: Scaling Actor and Critic Network.
Performance of SAC with SimBa by varying
width and depth for the actor and critic network.
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Furthermore, for the critic network, scaling up the width is generally more effective than scaling up
the depth. While both approaches can enhance the network’s expressivity, scaling up the depth can
decrease the simplicity bias as it adds more non-linear components within the network. Based on
our findings, we recommend width scaling as the default strategy.

7.3 SCALING REPLAY RATIO

According to scaling laws (Kaplan et al., 2020), performance can be enhanced not only by scaling
up the number of parameters but also by scaling up the computation time, which can be done by
scaling up the number of gradient updates per collected sample (i.e., replay ratio) in deep RL.

However, in deep RL, scaling up the replay ratio has been shown to decrease performance due to the
risk of overfitting the network to the initially collected samples (Nikishin et al., 2022; D’Oro et al.,
2022; Lee et al., 2023). To address this issue, recent research has proposed periodically reinitializing
the network to prevent overfitting, demonstrating that performance can be scaled with respect to the
replay ratio. In this section, we aim to assess whether the simplicity bias induced by SimBa can
mitigate overfitting under increased computation time (i.e., higher replay ratios).

To evaluate this, we trained SAC with SimBA using 2,
4, 8, and 16 replay ratios, both with and without peri-
odic resets. For SAC with resets, we reinitialized the en-
tire network and optimizer every 500,000 gradient steps.
We also compared our results with BRO (Nauman et al.,
2024), which incorporates resets.

Surprisingly, as illustrated in Figure 14, SimBa’s per-
formance consistently improves as the replay ratio in-
creases, even without periodic resets. We have ex-
cluded results for BRO without resets, as it fails to learn
meaningful behavior for all replay ratios (achieves lower
than 300 points). Notably, when resets are included for
SimBa, the performance gains become even more pro-
nounced, with a replay ratio of 8 outperforming the most
computationally intensive BRO algorithm (RR10).
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Figure 14: Scaling Replay Ratio. Per-
formance of SimBa with and without
periodic resets for various replay ratios.

8 LESSONS AND OPPORTUNITIES

Lessons. Historically, deep RL has suffered from overfitting, necessitating sophisticated training
protocols and implementation tricks to mitigate these issues (Hessel et al., 2018; Fujimoto et al.,
2023). These complexities serve as significant barriers for practitioners with limited resources, hin-
dering the effective usage of deep RL methods. In this paper, we improved performance by solely
modifying the network architecture while keeping the underlying algorithms unchanged. This ap-
proach simplifies the implementation of SimBa, making it easy to adopt. By incorporating simplicity
bias through architectural design and scaling up the number of parameters, the network converges
to simpler, generalizable functions, matching or surpassing state-of-the-art deep RL methods. We
also believe that SimBa follows the insights from Richard Sutton’s Bitter Lesson (Sutton, 2019): al-
though task-specific designs can yield immediate improvements, an approach that scales effectively
with increased computation may provide more sustainable benefits over the long term.

Opportunities. Our exploration of simplicity bias has primarily concentrated on the network ar-
chitecture; however, optimization techniques are equally vital. Strategies such as dropout (Hiraoka
et al., 2021), data augmentation (Kostrikov et al., 2020), and diverse optimization algorithms (Foret
et al., 2020) can further enhance convergence to simpler functions during training. Integrating these
techniques with continued parameter scaling presents a promising avenue for future research in
deep RL. Furthermore, while our focus has been on the basic model-free algorithm SAC, there ex-
ists considerable empirical success with model-based algorithms (Schwarzer et al., 2020; Hansen
et al., 2023; Hafner et al., 2023). Preliminary investigations into applying SimBa to model-based
RL, specifically TD-MPC2 (Hansen et al., 2023), have shown promise. We encourage the research
community to collaboratively pursue these avenues to advance deep RL architectures and facilitate
their successful application in real-world scenarios.

10



REPRODUCIBILITY

To ensure the reproducibility of our experiments, we provide the complete source code to run SAC
with SimBa. Moreover, we have included a Dockerfile to simplify the testing and replication of our
results. The raw scores of each experiment including all baselines are also included. The code is
available at https://github.com/SonyResearch/simba.
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A DEFINITION OF SIMPLICITY BIAS

This section provides more in-depth definition of simplicity bias for clarity.

A.1 COMPLEXITY MEASURE

Let X ⊆ Rn denote the input space and Y ⊆ Rm the output space. Consider the function space
F = {f |f : X → Y}. Given a training dataset D = {(xi, yi)}Ni=1 and a tolerance ϵ > 0, define the
set of functions I ⊆ F achieving a training loss below ϵ:

I =

{
f ∈ F

∣∣∣∣∣Ltrain(f) =
1

N

N∑
i=1

ℓ(f(xi), yi) < ϵ

}
, (8)

where ℓ : Y × Y → [0,∞) is a loss function such as mean squared error or cross-entropy.

To quantify the complexity of functions within F , we adopt a Fourier-based complexity measure as
described in Section 2. Specifically, for a function f with a Fourier series representation:

f(x) = (2π)d/2
∫

f̃(k) eik·x dk, (9)

where f̃(k) =
∫
f(x) e−ik·x dx is the Fourier transform of f .

Given a Fourier series representation f̃ , we perform a discrete Fourier transform by uniformly dis-
cretizing the frequency domain. Specifically, we consider frequencies k ∈ {0, 1, . . . ,K}, where K
is selected based on the Nyquist-Shannon sampling theorem (Shannon, 1949) to ensure an accurate
representation of f . This discretization transforms the continuous frequency domain into a finite set
of frequencies suitable for computational purposes.

Then, the complexity measure c : F → [0,∞) is defined as the weighted average of the Fourier
coefficients from discretization:

c(f) =

∑K
k=0 f̃(k) · k∑K
k=0 f̃(k)

. (10)

Equation 10 captures the intuition that higher complexity arises from the dominance of high-
frequency components, which correspond to rapid amplitude changes or intricate details in the func-
tion f . Conversely, a lower complexity measure indicates a greater contribution from low-frequency
components, reflecting simpler, smoother functions.

A.2 SIMPLICITY BIAS SCORE

Let f be a neural network, and let alg ∈ A denote the optimization algorithm used for training, such
as stochastic gradient descent. We quantify the simplicity bias score s : F ×A → (0,∞) as:

s(f, alg) = Ef∗∼Pf,alg

[
1

c(f∗)

]
(11)

where Pf,alg denotes the distribution over I induced by training f with alg. A higher simplicity bias
score indicates a stronger tendency to converge toward functions with lower complexity.

Then, from equation 11, we can compute the simplicity bias score with respect to the architecture
by marginalizing over the distribution of the algorithm as:

s(f) = Ealg∼A

[
Ef∗∼Pf,alg

[
1

c(f∗)

]]
. (12)

Directly measuring this bias by analyzing the complexity of the converged function is challenging
due to the non-stationary nature of training dynamics, especially in reinforcement learning where
data distributions evolve over time. Empirical studies (Valle-Perez et al., 2018; De Palma et al.,
2019; Mingard et al., 2019; Teney et al., 2024) suggest that the initial complexity of a network is
strongly correlated with the complexity of the functions it learns after training.
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Therefore, as a practical proxy for simplicity bias, we define the approximate of the simplicity bias
score s(f) for a network architecture f with an initial parameter distribution Θ0 as:

s(f) ≈ Eθ∼Θ0

[
1

c(fθ)

]
. (13)

where fθ denotes the network f parameterized by θ.

A higher simplicity bias score indicates that, on average, the network initialized from Θ0 represents
simpler functions prior to training, suggesting a predisposition to converge to simpler solutions
during optimization. This measure aligns with the notion that networks with lower initial complexity
are more likely to exhibit a higher simplicity bias.

B MEASURING SIMPLICITY BIAS

To quantify the simplicity bias defined in Equation 13, we adopt a methodology inspired by the
Neural Redshift framework (Teney et al., 2024). We utilize the original codebase provided by the
authors1 to assess the complexity of random neural networks. This approach evaluates the inherent
complexity of the architecture before any optimization, thereby isolating the architectural effects
from those introduced by training algorithms such as stochastic gradient descent.

Following the methodology outlined in Teney et al. (2024), we perform the following steps to mea-
sure the simplicity bias score of a neural network fθ(·):
Sampling Initialization. For each network architecture f , we generate N random initializations
θ ∼ Θ0. This ensemble of initial parameters captures the variability in complexity introduced by
different random seeds. In this work, we used N = 100.

Sampling Input. We define the input space X = [−100, 100]2 ⊂ R2 and uniformly divide it into a
grid of 90,000 points, achieving 300 divisions along each dimension. This dense sampling ensures
comprehensive coverage of the input domain.

Evaluating Function. For each sampled input point x ∈ X , we compute the corresponding output
fθ(x). The collection of these output values forms a 2-D grid of scalars, effectively representing the
network’s function as a grayscale image.

Discrete Fourier Transform. We apply a discrete Fourier transform (DFT) to the grayscale image
obtained from the function evaluations. This transformation decomposes fθ(·) into a sum of basis
functions of varying frequencies.

Measuring Function Complexity. Utilizing the Fourier coefficients obtained from the DFT, we
compute the complexity measure c(fθ) as defined in Equation 10. Specifically, we calculate the
frequency-weighted average of the Fourier coefficients:

c(fθ) =

∑K
k=0 f̃θ(k) · k∑K
k=0 f̃θ(k)

, (14)

where f̃θ(k) denotes the Fourier coefficient at frequency k.

Estimating Simplicity Bias Score. For each network f , we estimate the simplicity bias score s(f)
by averaging the inverse of the complexity measures over all N random initializations:

s(f) ≈ 1

N

N∑
i=1

1

c(fθi)
, (15)

where θi represents the i-th random initialization.

1https://github.com/ArmandNM/neural-redshift
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C PLASTICITY ANALYSIS

Recent studies have identified the loss of plasticity as a significant challenge in non-stationary train-
ing scenarios, where neural networks gradually lose their ability to adapt to new data over time
(Nikishin et al., 2022; Lyle et al., 2023; Lee et al., 2024). This phenomenon can severely impact the
performance and adaptability of models in dynamic learning environments such as RL. To quantify
and understand this issue, several metrics have been proposed, including stable-rank (Kumar et al.,
2022), dormant ratio (Sokar et al., 2023), and L2-feature norm (Kumar et al., 2022).

The stable-rank assesses the rank of the feature matrix, reflecting the diversity and richness of the
representations learned by the network. This is achieved by performing an eigen decomposition
on the covariance matrix of the feature matrix and counting the number of singular values σj that
exceed a predefined threshold τ :

s-Rank =

m∑
j=1

I(σj > τ) (16)

where F ∈ Rd×m is the feature matrix with d samples and m features, σj are the singular values,
and I(·) is the indicator function.

The dormant ratio measures the proportion of neurons with negligible activation. It is calculated as
the number of neurons with activation norms below a small threshold ϵ divided by the total number
of neurons D:

Dormant Ratio =
|{i | ∥ai∥ < ϵ}|

D
(17)

where ai represents the activation of neuron i.

The L2-feature norm represents the average L2 norm of the feature vectors across all samples:

Feature Norm =
1

N

N∑
i=1

∥Fi∥2 (18)

where Fi is the feature vector for the i-th sample. Large feature norms can signal overactive neurons,
potentially leading to numerical instability.

To assess how different architectures impact plasticity, we conducted experiments in DMC-Hard.
We compared Soft Actor-Critic (SAC) implemented with a standard MLP architecture against SAC
with the SimBa architecture. Each configuration was evaluated across 5 random seeds.

Figure 15: Plasticity Metrics Comparison. Average episode return for the DMC-Hard environ-
ment. Metrics compared include dormant ratio, s-rank, and feature norm. Higher dormant ratio and
feature norm, along with lower s-rank, indicate a greater loss of plasticity.

Figure 15 shows that SAC with the MLP architecture exhibits a high dormant ratio, low s-rank, and
large feature norms. These metrics indicate a significant loss of plasticity. In contrast, the SimBa
architecture maintains lower dormant ratios, higher s-rank values, and balanced feature norms. This
ensures more active neurons, diverse and rich feature representations, and stable activations.

These results demonstrate that SimBa effectively preserves plasticity, avoiding the degenerative
trends seen with the MLP-based SAC. It will be interesting for future work to understand how
simplicity bias and architectural choices influence network plasticity.
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D COMPARISON TO EXISTING ARCHITECTURES

Here we provide a more in-depth discussion related to the architectural difference between SimBa,
BroNet, and SpectralNet. As shown in Figure 16, SimBa differs from BroNet in three key aspects:
(i) the inclusion of RSNorm, (ii) the implementation of pre layer-normalization, (iii) the utilization
of a linear residual pathway, (iv) and the inclusion of a post-layer normalization layer. Similarly,
compared to SpectralNet, SimBa incorporates RSNorm, employs a linear residual pathway, and
leverages spectral normalization differently.

(a) SimBa

Observation

Linear

LayerNorm

ReLU

Linear

LayerNorm

ReLU

Linear

LayerNorm

N×

(b) BroNet

Observation

Linear

ReLU

Linear

ReLU

LayerNorm

Linear

SpectralNorm

SpectralNorm

N×

(c) SpectralNet

`

RSNorm

Linear

LayerNorm

Linear

ReLU

Linear

LayerNorm

N×

Observation

Figure 16: Architecture Comparison. Illustration of SimBa, BroNet, and SpectralNet.

E COMPUTATIONAL RESOURCES

The training was performed using NVIDIA RTX 3070, A100, or H100 GPUs for neural network
computations and either a 16-core Intel i7-11800H or a 32-core AMD EPYC 7502 CPU for running
simulators. Our software environment included Python 3.10, CUDA 12.2, and Jax 4.26.

When benchmarking computation time, experiments were conducted on a same hardware equipped
with an NVIDIA RTX 3070 GPU and 16-core Intel i7-11800H CPU.
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Table 1: Environment details. We list the episode length, action repeat for each domain, total
environment steps, and performance metrics used for benchmarking SimBa.

DMC MyoSuite HumanoidBench Craftax
Episode length 1, 000 100 500 - 1, 000 −
Action repeat 2 2 2 1
Effective length 500 50 250 - 500 −
Total env. steps 500K-1M 1M 2M 1B
Performance metric Average Return Average Success Average Return Average Score

F ENVIRONMENT DETAILS

This section details the benchmark environments used in our evaluation. We list all tasks from each
benchmark along with their observation and action dimensions. Visualizations of each environment
are provided in Figure 6, and detailed environment information is available in Table 1.

F.1 DEEPMIND CONTROL SUITE

DeepMind Control Suite (Tassa et al., 2018, DMC) is a standard benchmark for continuous con-
trol, featuring a range of locomotion and manipulation tasks with varying complexities, from simple
low-dimensional tasks (s ∈ R3) to highly complex ones (s ∈ R223). We evaluate 27 DMC tasks, cat-
egorized into two groups: DMC-Easy&Medium and DMC-Hard. All Humanoid and Dog tasks are
classified as DMC-Hard, while the remaining tasks are grouped under DMC-Easy&Medium. The
complete lists of DMC-Easy&Medium and DMC-Hard are provided in Tables 2 and 3, respectively.

For our URL experiments, we adhere to the protocol in Park et al. (2023), using an episode length
of 400 steps and augmenting the agent’s observations with its x, y, and z coordinates. For the
representation function ϕ (i.e., reward network) in METRA, we only used x, y, and z positions as
input. This approach effectively replaces the colored floors used in the pixel-based humanoid setting
of METRA with state-based inputs.

F.2 MYOSUITE

MyoSuite (Caggiano et al., 2022) simulates musculoskeletal movements with high-dimensional state
and action spaces, focusing on physiologically accurate motor control. It includes benchmarks for
complex object manipulation using a dexterous hand. We evaluate 10 MyoSuite tasks, categorized
as ”easy” when the goal is fixed and ”hard” when the goal is randomized, following Hansen et al.
(2023). The full list of MyoSuite tasks is presented in Table 4.

F.3 HUMANOIDBENCH

HumanoidBench (Sferrazza et al., 2024) is a high-dimensional simulation benchmark designed to
advance humanoid robotics research. It features the Unitree H1 humanoid robot with dexterous
hands, performing a variety of challenging locomotion and manipulation tasks. These tasks range
from basic locomotion to complex activities requiring precise manipulation. The benchmark fa-
cilitates algorithm development and testing without the need for costly hardware by providing a
simulated platform. In our experiments, we focus on 14 locomotion tasks, simplifying the setup by
excluding the dexterous hands. This reduces the complexity associated with high degrees of free-
dom and intricate dynamics. All HumanoidBench scores are normalized based on each task’s target
success score as provided by the authors. A complete list of tasks is available in Table 5.

F.4 CRAFTAX

Craftax (Matthews et al., 2024) is an open-ended RL environment that combines elements from
Crafter (Hafner, 2022) and NetHack (Küttler et al., 2020). It presents a challenging scenario requir-
ing the sequential completion of numerous tasks. A key feature of Craftax is its support for vec-
torized parallel environments and a full end-to-end GPU learning pipeline, enabling a large number
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of environment steps at low computational cost. The original baseline performance in Craftax is
reported as a percentage of the maximum score (226). In our experiments, we report agents’ raw
average scores instead.

Table 2: DMC Easy & Medium. We consider a total of 20 continuous control tasks for the DMC
Easy & Medium benchmark. We list all considered tasks below and baseline performance for each
task is reported at 500K environment steps.

Task Observation dim Action dim
Acrobot Swingup 6 1
Cartpole Balance 5 1
Cartpole Balance Sparse 5 1
Cartpole Swingup 5 1
Cartpole Swingup Sparse 5 1
Cheetah Run 17 6
Finger Spin 9 2
Finger Turn Easy 12 2
Finger Turn Hard 12 2
Fish Swim 24 5
Hopper Hop 15 4
Hopper Stand 15 4
Pendulum Swingup 3 1
Quadruped Run 78 12
Quadruped Walk 78 12
Reacher Easy 6 2
Reacher Hard 6 2
Walker Run 24 6
Walker Stand 24 6
Walker Walk 24 6

Table 3: DMC Hard. We consider a total of 7 continuous control tasks for the DMC Hard bench-
mark.We list all considered tasks below and baseline performance for each task is reported at 1M
environment steps.

Task Observation dim Action dim
Dog Run 223 38
Dog Trot 223 38
Dog Stand 223 38
Dog Walk 223 38
Humanoid Run 67 24
Humanoid Stand 67 24
Humanoid Walk 67 24
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Table 4: MyoSuite. We consider a total of 10 continuous control tasks for the MyoSuite benchmark,
which encompasses both fixed-goal (’Easy’) and randomized-goal (’Hard’) settings. We list all
considered tasks below and baseline performance for each task is reported at 1M environment steps.

Task Observation dim Action dim
Key Turn Easy 93 39
Key Turn Hard 93 39
Object Hold Easy 91 39
Object Hold Hard 91 39
Pen Twirl Easy 83 39
Pen Twirl Hard 83 39
Pose Easy 108 39
Pose Hard 108 39
Reach Easy 115 39
Reach Hard 115 39

Table 5: HumanoidBench. We consider a total of 14 continuous control locomotion tasks for the
UniTree H1 humanoid robot from the HumanoidBench domain. We list all considered tasks below
and baseline performance for each task is reported at 2M environment steps.

Task Observation dim Action dim
Balance Hard 77 19
Balance Simple 64 19
Crawl 51 19
Hurdle 51 19
Maze 51 19
Pole 51 19
Reach 57 19
Run 51 19
Sit Simple 51 19
Sit Hard 64 19
Slide 51 19
Stair 51 19
Stand 51 19
Walk 51 19

Table 6: Craftax. We consider the symbolic version of Craftax. Baseline performance is reported
at 1B environment steps.

Task Observation dim Action dim
Craftax-Symbolic-v1 8268 43
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G HYPERPARAMETERS

G.1 OFF-POLICY

Table 7: SAC+SimBa hyperparameters. The hyperparameters listed below are used consistently
across all tasks when integrating SimBa with SAC. For the discount factor, we set it automatically
using heuristics used by TD-MPC2 (Hansen et al., 2023).

Hyperparameter Value
Critic block type SimBa Residual
Critic num blocks 2
Critic hidden dim 512
Critic learning rate 1e-4
Target critic momentum (τ ) 5e-3
Actor block type SimBa Residual
Actor num blocks 1
Actor hidden dim 128
Actor learning rate 1e-4
Initial temperature (α0) 1e-2
Temperature learning rate 1e-4
Target entropy (H∗) |A|/2
Batch size 256
Optimizer AdamW
Optimizer momentum (β1, β2) (0.9, 0.999)
Weight decay (λ) 1e-2
Discount (γ) Heuristic
Replay ratio 2
Clipped Double Q HumanoidBench: True

Other Envs: False

Table 8: DDPG+SimBa hyperparameters. The hyperparameters listed below are used consistently
across all tasks when integrating SimBa with DDPG. For the discount factor, we set it automatically
using heuristics used by TD-MPC2 (Hansen et al., 2023).

Hyperparameter Value
Critic block type SimBa Residual
Critic num blocks 2
Critic hidden dim 512
Critic learning rate 1e-4
Target critic momentum (τ ) 5e-3
Actor block type SimBa Residual
Actor num blocks 1
Actor hidden dim 128
Actor learning rate 1e-4
Exploration noise N (0, 0.12)
Batch size 256
Optimizer AdamW
Optimizer momentum (β1, β2) (0.9, 0.999)
Weight decay (λ) 1e-2
Discount (γ) Heuristic
Replay ratio 2
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Table 9: TDMPC2+SimBa hyperparameters. We provide a detailed list of the hyperparameters
used for the shared encoder module in TD-MPC2 (Hansen et al., 2023). Aside from these, we
follow the hyperparameters specified in the original TD-MPC2 paper. The listed hyperparameters
are applied uniformly across all tasks when integrating SimBa with TD-MPC2.

Hyperparameter Value
Encoder block type SimBa Residual
Encoder num blocks 2
Encoder hidden dim 256
Encoder learning rate 1e-4
Encoder weight decay 1e-1

G.2 ON-POLICY

Table 10: PPO+SimBa hyperparameters. We provide a detailed list of the hyperparameters when
integrating SimBa with PPO (Schulman et al., 2017). Aside from these, we follow the hyperparam-
eters specified in the Craftax paper (Matthews et al., 2024).

Hyperparameter Value
Critic block type SimBa Residual
Critic num blocks 2
Critic hidden dim 512
Critic learning rate 1e-4
Actor block type SimBa Residual
Actor num blocks 1
Actor hidden dim 256
Actor learning rate 1e-4
Optimizer AdamW
Optimizer momentum (β1, β2) (0.9, 0.999)
Optimizer eps 1e-8
Weight decay (λ) 1e-2

G.3 UNSUPERVISED RL

Table 11: METRA+SimBa hyperparameters. We provide a detailed list of the hyperparameters
when integrating SimBa with METRA (Park et al., 2023). Aside from these, we follow the hyper-
parameters specified in the original METRA paper.

Hyperparameter Value
Critic block type SimBa Residual
Critic num blocks 2
Critic hidden dim 512
Actor block type SimBa Residual
Actor num blocks 1
Actor hidden dim 128
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H LEARNING CURVE

Figure 17: Per task learning curve for DMC Easy&Medium. Mean and 95% CI over 10 seeds
for SimBa and BRO, 5 seeds for TD7 and SAC, 3 seeds for TD-MPC2 and DreamerV3.

Figure 18: Per task learning curve for DMC Hard. Mean and 95% CI over 10 seeds for SimBa
and BRO, 5 seeds for TD7 and SAC, 3 seeds for TD-MPC2 and DreamerV3.
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Figure 19: Per task learning curve for MyoSuite. Mean and 95% CI over 10 seeds for SimBa and
BRO, 5 seeds for TD7 and SAC, 3 seeds for TD-MPC2 and DreamerV3.

Figure 20: Per task learning curve for HumanoidBench. Mean and 95% CI over 10 seeds for
SimBa, 5 seeds for BRO, TD7, and SAC, 3 seeds for TD-MPC2 and DreamerV3. We no
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Figure 21: Per task learning curve for Craftax. We visualize the success rate learning curve for
66 tasks in Craftax. Mean and 95% CI over 5 seeds for PPO + SimBa and PPO.
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I FULL RESULT

Table 12: Per task results for DMC Easy&Medium. Results for SimBa and BRO are averaged
over 10 seeds, for TD7 and SAC over 5 seeds, and for TD-MPC2 and DreamerV3 over 3 seeds.

Method SimBa BRO TD7 SAC TD-MPC2 DreamerV3

Acrobot Swingup 331.57 390.78 39.83 57.56 361.07 360.46
Cartpole Balance 999.05 998.66 998.79 998.79 993.93 994.95
Cartpole Balance Sparse 940.53 954.21 988.58 1000.00 1000.00 800.25
Cartpole Swingup 866.53 878.69 878.09 863.24 876.07 863.90
Cartpole Swingup Sparse 823.97 833.18 480.74 779.99 844.77 262.69
Cheetah Run 814.97 739.67 897.76 716.43 757.60 686.25
Finger Spin 778.83 987.45 592.74 814.69 984.63 434.06
Finger Turn Easy 881.33 905.85 485.66 903.07 854.67 851.11
Finger Turn Hard 860.22 905.30 596.32 775.21 876.27 769.86
Fish Swim 786.73 680.34 108.84 462.67 610.23 603.34
Hopper Hop 326.69 315.04 110.27 159.43 303.27 192.70
Hopper Stand 811.75 910.88 445.50 845.89 936.47 722.42
Pendulum Swingup 824.53 816.20 461.40 476.58 841.70 825.17
Quadruped Run 883.68 818.62 515.13 116.91 939.63 471.25
Quadruped Walk 952.96 936.06 910.55 147.83 957.17 472.31
Reacher Easy 972.23 933.77 920.38 951.80 919.43 888.36
Reacher Hard 965.96 956.52 549.50 959.59 913.73 935.25
Walker Run 687.16 754.43 782.32 629.44 820.40 620.13
Walker Stand 983.02 986.58 984.63 972.59 957.17 963.28
Walker Walk 970.73 973.41 976.58 956.67 978.70 925.46

IQM 885.70 888.02 740.19 799.75 895.47 748.58
Median 816.78 836.62 623.18 676.59 836.93 684.18
Mean 823.12 833.78 636.18 679.42 836.34 682.16
OG 0.1769 0.1662 0.3638 0.3206 0.1637 0.3178

Table 13: Per task results for DMC Hard. Results for SimBa and BRO are averaged over 10 seeds,
for TD7 and SAC over 5 seeds, and for TD-MPC2 and DreamerV3 over 3 seeds.

Method SimBa BRO TD7 SAC TD-MPC2 DreamerV3

Dog Run 544.86 374.63 127.48 36.86 169.87 15.72
Dog Stand 960.38 966.97 753.23 102.04 798.93 55.87
Dog Trot 824.69 783.12 126.00 29.36 500.03 10.19
Dog Walk 916.80 931.46 280.87 38.14 493.93 23.36
Humanoid Run 181.57 204.96 79.32 116.97 184.57 0.91
Humanoid Stand 846.11 920.11 389.80 352.72 663.73 5.12
Humanoid Walk 668.48 672.55 252.72 273.67 628.23 1.33

IQM 773.28 771.50 216.04 69.03 527.11 9.63
Median 706.39 694.20 272.62 159.36 528.26 17.13
Mean 706.13 693.40 287.06 135.68 491.33 16.07
OG 0.2939 0.3066 0.7129 0.8643 0.5087 0.9839
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Table 14: Per task results for MyoSuite. Results for SimBa and BRO are averaged over 10 seeds,
for TD7 and SAC over 5 seeds, and for TD-MPC2 and DreamerV3 over 3 seeds.

Method SimBa BRO TD7 SAC TD-MPC2 DreamerV3

Key Turn Easy 100.00 100.00 100.00 100.00 100.00 88.89
Key Turn Hard 7.00 42.00 0.00 10.00 0.00 0.00
Object Hold Easy 90.00 90.00 20.00 90.00 100.00 33.33
Object Hold Hard 96.00 42.00 10.00 96.00 56.67 9.44
Pen Twirl Easy 80.00 90.00 100.00 50.00 70.00 96.67
Pen Twirl Hard 77.00 76.00 12.00 55.00 40.00 53.33
Pose Easy 100.00 100.00 0.00 90.00 100.00 100.00
Pose Hard 0.00 0.00 0.00 0.00 0.00 0.00
Reach Easy 100.00 100.00 100.00 100.00 100.00 100.00
Reach Hard 93.00 74.00 14.00 16.00 83.33 0.00

IQM 95.20 87.60 22.31 71.40 77.50 46.56
Median 77.00 72.00 34.00 62.50 65.00 47.00
Mean 74.30 71.40 35.60 60.70 65.00 48.17
OG 99.93 99.93 99.96 99.94 99.94 99.95

Table 15: Per task results for HumanoidBench. Results for SimBa are averaged over 10 seeds,
for BRO, TD7 and SAC over 5 seeds, and for TD-MPC2 and DreamerV3 over 3 seeds.

Method SimBa BRO TD7 SAC TD-MPC2 DreamerV3

Balance Hard 137.20 145.95 79.90 69.02 64.56 16.07
Balance Simple 816.38 246.57 132.82 113.38 50.69 14.09
Crawl 1370.51 1373.83 868.63 830.56 1384.40 906.66
Hurdle 340.60 128.60 200.28 31.89 1000.12 18.78
Maze 283.58 259.03 179.23 254.38 198.65 114.90
Pole 1036.70 915.89 830.72 760.78 1269.57 289.18
Reach 523.10 317.99 159.37 347.92 505.61 341.62
Run 741.16 429.74 196.85 168.25 1130.94 85.93
Sit Hard 783.95 989.07 293.96 345.65 1027.47 9.95
Sit Simple 1059.73 1151.84 1183.26 994.58 1074.96 40.53
Slide 577.87 653.17 197.07 208.46 780.82 24.43
Stair 527.49 249.86 77.19 65.53 398.21 49.04
Stand 906.94 780.52 1005.54 1029.78 1020.59 280.99
Walk 1202.91 1080.63 143.86 412.21 1165.42 125.59

IQM 747.43 558.03 256.77 311.46 885.67 72.30
Median 733.09 632.93 385.41 399.93 796.18 160.49
Mean 736.30 623.05 396.33 402.31 787.64 165.55
OG 0.3197 0.4345 0.6196 0.6016 0.2904 0.8352
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