
Slow and Steady Wins the Race
Maintaining Plasticity with Hare and Tortoise Networks

Hojoon Lee 1 Hyeonseo Cho 2 Donghu Kim 1 Hyunseung Kim 1 Dukgi Min 2 Jaegul Choo 1 Clare Lyle 3

Abstract
This study delves into the loss of generaliza-
tion ability in neural networks, revisiting warm-
starting experiments from Ash & Adams (2020).
Our empirical analysis reveals that common meth-
ods designed to enhance plasticity by maintaining
trainability provide limited benefits to generaliza-
tion. While reinitializing the network can be effec-
tive, it also risks losing valuable prior knowledge.
To this end, we introduce the Hare & Tortoise, in-
spired by the brain’s complementary learning sys-
tem. Hare & Tortoise consists of two components:
the Hare network, which rapidly adapts to new in-
formation like the hippocampus, and the Tortoise
network, which gradually integrates knowledge
akin to the neocortex. By periodically reinitial-
izing the Hare network to the Tortoise’s weights,
our method preserves plasticity while retaining
general knowledge. Hare & Tortoise can effec-
tively maintain the network’s ability to generalize,
which improves advanced reinforcement learning
algorithms on the Atari-100k benchmark. The
code is available at https://github.com/
dojeon-ai/hare-tortoise.

1. Introduction
In neural networks, plasticity refers to the ability to learn
and adapt to new data. Maintaining plasticity is crucial in
continual learning and reinforcement learning, where net-
works must consistently adapt to incoming data. With the
emergence of large-scale models like GPT-4 (Achiam et al.,
2023) and Gemini (Google et al., 2023), understanding plas-
ticity is becoming crucial, considering a substantial resource
that is required to retrain these models from scratch.

Recent studies have shown that neural networks tend to lose
plasticity as training progresses (Lyle et al., 2023; Dohare

1KAIST 2Konkuk University 3Deepmind. Correspondence to:
Hojoon Lee <joonleesky@kaist.ac.kr>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

copy

ema

Hare
network

𝜃!

grad

𝑥

ℒ(𝑓"! 𝑥 , 𝑦)

Tortoise
network

𝜃#

Figure 1. Hare & Tortoise architecture. The Hare Network
rapidly updates its weights for new data, while the Tortoise Net-
work slowly integrates knowledge through an exponential moving
average (ema) of the Hare’s weights. Periodic reinitialization of the
Hare Network to the Tortoise Network’s weights ensures a balance
between fast, fleeting adaptation and slow, steady generalization.

et al., 2023). In experiments where the dataset labels were
periodically randomized, some networks gradually lost their
ability to minimize their training loss. This phenomenon
has been linked to several factors such as the increasing
distance from initial weights, emergence of gradient starva-
tion, and accumulating dormant neurons (Lyle et al., 2023;
Dohare et al., 2023; Lewandowski et al., 2023). To miti-
gate this problem, various methods have been developed
(Lyle et al., 2022; Kumar et al., 2023b; Abbas et al., 2023;
Sokar et al., 2023), proving their efficacy in maintaining
trainability throughout repetitive learning tasks.

Ultimately, the goal of maintaining plasticity is not just to
memorize the new training data but to enable the network to
generalize to unseen data. However, it is not well understood
whether, and if so how, improved trainability translates to
better generalization. The first contribution of this paper is
to conduct a rigorous empirical study into the relationship
between these dual faces of plasticity. To do so, we expand
the warm-starting experiments from Ash & Adams (2020)
by first training some networks on noisy dataset subsets and
then retraining them on complete, noise-free datasets. Here,
we observed a consistent decline in generalization when
models were initially trained on smaller and noisier subsets.

1

https://github.com/dojeon-ai/hare-tortoise
https://github.com/dojeon-ai/hare-tortoise

Slow and Steady Wins the Race: Maintaining Plasticity with Hare and Tortoise Networks

On top of this setup, we investigate whether trainability-
enhancing methods can mitigate this decline.

Surprisingly, while these methods effectively maintain the
network’s ability to reduce the training loss in later epochs,
broadly speaking they do not improve generalization. In-
stead, we observe that standard training techniques such as
L2 regularization (Krogh & Hertz, 1991) and data augmen-
tation (Takahashi et al., 2019) tend to have a much greater
effect on generalization. However, they are not sufficient to
completely address the loss of generalization ability. Weight
Re-initialization methods such as Shrink & Perturb (Ash &
Adams, 2020) emerge as the most effective solution, enhanc-
ing plasticity by periodically resetting and scaling weights.

While effective, resetting the network (even if it’s partial)
is costly. In large models, resetting resembles a form of
less intensive retraining and demands considerable effort
to restore prior performance. When data access is limited
due to privacy (Abadi et al., 2016; McMahan et al., 2017) or
storage constraints (Shin et al., 2017; Smith et al., 2023), it
risks losing previously learned valuable information. In the
end, we seek a system that allows the network to quickly
adapt to new data and overwrite spurious correlations with-
out erasing all of the prior knowledge. In our efforts towards
this goal, we draw inspiration from the human brain.

Humans maintain plasticity through a dynamic interaction
within the brain’s complementary learning systems (McClel-
land et al., 1995). The human brain possesses two distinct
memory modules: the fast-learning hippocampus and the
slow-learning neocortex (Kumaran et al., 2016). The hip-
pocampus rapidly encodes and transfers new information to
the neocortex, which is responsible for storing and retaining
long-term knowledge and skills. While the hippocampus
periodically forgets its knowledge to preserve the brain’s
plasticity, the neocortex serves as a long-term module to
preserve general knowledge (Frankland et al., 2013).

Inspired by the complementary learning theory, we intro-
duce a novel network architecture, Hare & Tortoise, re-
flecting the brain’s fast and slow learning mechanisms. As
illustrated in Figure 1, the Hare network, like the hippocam-
pus, rapidly updates information and explores optimization
landscapes. On the other hand, the Tortoise network, akin to
the neocortex, slowly integrates knowledge from the Hare
network by an exponential moving average. To maintain
plasticity, the Hare network is periodically reinitialized to
the Tortoise network’s weights, which naturally retains the
generalizable knowledge of the slow-learning Tortoise.

Hare & Tortoise consistently yields impressive results across
various experimental setups. In warm-starting and continual
learning experiments, Hare & Tortoise effectively maintain
generalization abilities without any sudden performance
drop after resets, showing competitive performance com-

pared to reinitialization methods. Furthermore, in reinforce-
ment learning, Hare & Tortoise can be seamlessly integrated
into modern algorithms that employ momentum target net-
works. By just periodically reinitializing the online network
to the target network, Hare & Tortoise enhances the sample
efficiency of both DrQ (Kostrikov et al., 2020) and BBF
(Schwarzer et al., 2023) in the Atari-100k benchmark.

2. Related Work
2.1. Loss of Plasticity

The design of neural network architectures and initialization
schemes that both train and generalize well has produced a
rich scientific literature (Glorot & Bengio, 2010; He et al.,
2015; 2016), allowing supervised training to reliably scale
to immense model and dataset sizes (Kaplan et al., 2020).
In recent years, however, many works have identified the
insufficiency of standard optimization algorithms in non-
stationary domains, such as reinforcement learning (Lyle
et al., 2023), continual learning (Kumar et al., 2023a; Do-
hare et al., 2023), and lifelong learning (Sodhani et al.,
2020). In particular, these works identify a phenomenon
known as loss of plasticity, whereby neural networks pro-
gressively lose their ability to learn and adapt to new data.

Loss of plasticity, as noted by Berariu et al. (2021), can
be decomposed into two distinct factors: a reduced abil-
ity of networks to minimize the training loss on new data,
trainability, and a reduced ability to generalize well to un-
seen data, generalizability. In the former case, Lyle et al.
(2022) observed that neural networks can exhibit reduced
performance over time on sequential memorization tasks,
where no generalization is required. In the latter case, Ash
& Adams (2020) observed reduced generalization perfor-
mance after warm-starting on a subset of the training data,
despite achieving zero training error.

Understanding the precise causes of plasticity loss for both
training and generalization remains unclear (Lyle et al.,
2023; 2024), but efforts to mitigate plasticity loss have been
diverse. To enhance trainability, methods include maintain-
ing active units (Abbas et al., 2023; Elsayed & Mahmood,
2024), preventing gradient starvation (Gogianu et al., 2021;
Lyle et al., 2022; Dohare et al., 2023), and limiting devia-
tion from initial weights (Lewandowski et al., 2023; Kumar
et al., 2023b). Regarding generalization, studies have shown
the effectiveness of periodic reinitialization to the network’s
original weights (Ash & Adams, 2020; Zhou et al., 2022;
Zaidi et al., 2023; Noukhovitch et al., 2023; Frati et al.,
2023), particularly in data-efficient reinforcement learning
(Nikishin et al., 2022; Schwarzer et al., 2023; Lee et al.,
2023; Xu et al., 2023).

Despite these efforts, the relationship between enhancing
trainability and achieving better generalization under non-

2

Slow and Steady Wins the Race: Maintaining Plasticity with Hare and Tortoise Networks

stationary learning conditions is not fully understood. Our
research aims to bridge this gap by investigating whether
modern neural networks suffer from a loss of trainability and
whether enhancing trainability can counteract this decline.

2.2. Complementary Learning System

The Complementary Learning System (CLS) in the human
brain is crucial for us to continuously acquire, consolidate,
and transfer knowledge. The CLS operates with dynamic in-
teraction between the hippocampus and the neocortex. The
hippocampus is responsible for rapid learning and short-
term adaptation of episodic information, while the neocortex
is responsible for the slower, structured integration of long-
term knowledge (McClelland et al., 1995; Kumaran et al.,
2016). Another key process in the brain is forgetting, which
discards old information to make room for new knowledge,
a critical component in maintaining brain plasticity (Frank-
land et al., 2013; Gravitz, 2019; Ryan & Frankland, 2022).

In neural networks, the CLS principle has been applied to
fields that require continual learning. In continual learn-
ing, dual-network architectures have been designed to repli-
cate the mechanisms of the hippocampus and neocortex.
The hippocampal network, fast learner, undergoes standard
supervised learning, while the neocortical network, slow
learner, is trained through self-supervised objectives (Pham
et al., 2021), ensembles (Arani et al., 2022; Pham et al.,
2022), or knowledge distillation (Gomez-Villa et al., 2024).
Similarly, in reinforcement learning, distinct architectural
designs (Duan et al., 2016; Pritzel et al., 2017) or decom-
posed value functions (Anand & Precup, 2023) have been
employed to echo this concept.

This work distinguishes itself from existing methods by ex-
plicitly integrating a forgetting mechanism to enhance the
network’s plasticity. Unlike previous studies that design net-
works based on CLS principles, our approach emphasizes
the crucial role of forgetting to acquire new knowledge. In
our approach, the Hare network is periodically reinitialized
to the Tortoise network’s weights, forgetting obsolete infor-
mation while preserving generalizable knowledge within
the Tortoise network.

3. Investigating the Effect of Warm-Starting
on Neural Network Generalization

Many methods in the literature that aim to mitigate the
loss of plasticity focus on ensuring the network remains
trainable, meaning the network can continually minimize
the training loss. It is not guaranteed, however, that trainable
networks necessarily avoid overfitting (Zhang et al., 2021;
Xiao et al., 2020). This section will use the warm-starting
regime of Ash & Adams (2020) to disentangle the dual
aspects of plasticity into trainability and generalizability.

Our analysis will aim both to identify features of a task that
increase the risk of overfitting and to assess whether existing
approaches can maintain a network’s generalizability.

3.1. Experimental Setup

Adopting the experimental setup from Ash & Adams (2020);
Zaidi et al. (2023), we begin with training networks on
noisy data subsets, followed by retraining it on complete,
noise-free datasets. This setup is particularly relevant to
deep reinforcement learning using a temporal difference
loss (Tesauro et al., 1995; Sutton & Barto, 2018). Here,
the network begins training with a small dataset containing
noisy targets, followed by a gradual increase in data size
and target accuracy. Our experiments are designed to yield
insight into neural networks’ generalization abilities under
analogous non-stationary learning dynamics.

Dataset and Architecture. For our study, we select datasets
and architectures that are widely used. For dataset, we
used MNIST (LeCun et al., 1998), CIFAR-10, CIFAR-100
(Krizhevsky, 2009) and Tiny ImageNet (Le & Yang, 2015).
For each dataset, we paired a network architecture of 3-layer
MLP, ResNet-18 (He et al., 2016), ViT-Tiny (Dosovitskiy
et al., 2020), and VGG-16 (Simonyan & Zisserman, 2014).

Warm-starting. Our networks were initially warm-started
using a subset of the dataset, with varying ratios from
{0.1, 0.2, 0.4, 0.6, 0.8, 1.0}, where 1.0 represents the entire
dataset. Following Zhang et al. (2021), we inject label noise
by substituting true labels with random ones at varying ratios
of {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}. Subsequently, the network
was trained on the complete dataset without label noise.

Training Details. In both warm-starting and subse-
quent training phases, we employed the AdamW opti-
mizer (Loshchilov & Hutter, 2017) with L2 weight de-
cay and a batch size of 256. For each dataset, the
learning rate was tuned via grid search, ranging from
{0.01, 0.001, 0.0001, 0.00001}. Since the optimizer statis-
tics within the Adam optimizer (β1, β2) can bias the opti-
mization trajectory, we reinitialized the optimizer before
proceeding to the subsequent training phase (Gogianu et al.,
2021; Lyle et al., 2023; Asadi et al., 2023).

Training epochs were fixed to 100 for both phases, with a
proportional increase in epochs during the warm-starting
phase with subsets, to equalize the number of total gradient
updates (e.g., 1000 epochs for 10% of the dataset). 5 random
seeds were used for experiments, except for Tiny ImageNet
where 3 seeds were employed.

3.2. Effects of Warm-Starting on Generalization

In this section, we study the effects of warm-starting on
generalization, finding that plasticity loss can be exacerbated
by reduced data diversity and increased label noise.

3

Slow and Steady Wins the Race: Maintaining Plasticity with Hare and Tortoise Networks

(a)

(b)

(c)

Figure 2. Impact of Warm-Starting on Generalization. This figure demonstrates how the subset and label noise ratios during warm-
starting affect network generalization. (a) Shows a negative correlation between test accuracy and subset ratio without label noise. (b)
Presents a negative correlation between test accuracy and label noise ratio, with a subset ratio constant at 1.0. (c) Presents the combined
impact, indicating both reduced data size and increased label noise detrimentally affect generalization.

In Figure 2.(a), we examine the relationship between ini-
tial dataset size and test accuracy, without label noise. Our
analysis reveals that reductions in dataset size impair gener-
alization, as evidenced by lower test accuracy scores. Figure
2.(b) explores the impact of injecting varying levels of label
noise with a complete dataset. We observe a significant
degradation in generalization when these models are subse-
quently trained on noise-free datasets. Figure 2.(c) explores
the combined effects of smaller subsets and increased label
noise, showing that these factors exacerbate performance de-
terioration. Despite this performance decline, warm-started
models achieved near-perfect training accuracy, on par with
models that are freshly initialized (details in Appendix B).

Our analysis also uncovers that both dataset type and net-
work architecture influence the network’s plasticity. For in-
stance, the MNIST dataset with an MLP architecture shows
a minimal decline, while Tiny ImageNet with VGG archi-
tecture exhibited a substantial loss. While both dataset and
architecture are key factors, we observed a more pronounced
effect from the dataset. This is corroborated in Appendix
B.2, where we conduct additional experiments with CIFAR-
10 using a VGG16 and Tiny ImageNet with ResNet-18.
These experiments reveal that shifting from CIFAR-10 to

Tiny ImageNet has a more significant impact than changes
in architecture within a single dataset.

3.3. Effects of Optimizer on Generalizability

Modern neural networks commonly utilize adaptive opti-
mizers like Adam (Kingma & Ba, 2014) or LARS (You
et al., 2019), which adjust convergence speed through pa-
rameters such as β1, β2, and ϵ. To assess the potential of
these parameters in mitigating generalization loss during
warm-starting, we conducted a grid search over β1, β2, and
ϵ in Adam optimizer. Results are depicted in Figure 4.

Our findings indicate that tuning β1 and β2 showed marginal
improvements, with default values generally performing
best (β1, β2 = (0.9, 0.999)). Decreasing momentum in
Adam may slow convergence but does not effectively coun-
teract generalization loss.

Conversely, larger epsilon values seemed to alleviate gen-
eralization loss, aligning with prior studies (Gogianu et al.,
2021; Lyle et al., 2023). This indicates that larger epsilon
induces smoother gradients, mitigating the generalization
aspect of plasticity loss. Notably, large epsilon values are
commonly used in reinforcement learning algorithms as

4

Slow and Steady Wins the Race: Maintaining Plasticity with Hare and Tortoise Networks

0 25 50 75 100
Epoch

0.60

0.70

0.80

0.90

Te
st

 A
cc

ur
ac

y

w/o warm start

w/o warm start (+aug)

warm start

CIFAR-10 (ResNet-18)
L2 Aug Spectral Regen ReDo CReLU Head Reset Shrink Perturb L2 + Aug + Shrink Perturb

0 25 50 75 100
Epoch

0.40

0.45

0.50

0.55

Te
st

 A
cc

ur
ac

y

w/o warm start

w/o warm start (+aug)

warm start

CIFAR-100 (ViT-Tiny)

0 25 50 75 100
Epoch

0.00

0.10

0.20

0.30

0.40

0.50

Te
st

 A
cc

ur
ac

y

w/o warm start
w/o warm start (+aug)

warm start

Tiny Imagenet (VGG-16)

Figure 3. Comparison of Existing Methods. This figure presents a comparative analysis of test accuracies for different methods applied
to networks warm-started with a 10% subset ratio and 50% label noise. Dashed lines indicate the performance of a warm-started network
(lower bound) and a fresh network without warm-starting (upper bound). Generalizability methods (L2, Aug) are marked in green,
Trainability methods (Spectral, Regen, ReDo, CReLU) in red, and Re-initialization methods (Head Reset, Shrink & Perturb) in blue.

0.5 0.8 0.9 0.95 0.99 .999
1

0.65

0.70

0.75

0.80

0.85

Fin
al

 Te
st

 A
cc

ur
ac

y no warm start

warm start

CIFAR-10 (ResNet18)

0.5 0.8 0.9 0.95 0.99 .999
1

0.42

0.44

0.46

0.48

0.50

0.52

Fin
al

 Te
st

 A
cc

ur
ac

y no warm start

warm start

CIFAR-100 (ViT-Tiny)

0.5 0.8 0.9 0.95 0.99 .999
1

0.1

0.2

0.3

0.4

0.5

Fin
al

 Te
st

 A
cc

ur
ac

y no warm start

warm start

Tiny Imagenet (VGG-16)

0.9 0.95 0.99 0.999 0.9995
2

0.65

0.70

0.75

0.80

0.85

Fin
al

 Te
st

 A
cc

ur
ac

y no warm start

warm start

CIFAR-10 (ResNet18)

0.9 0.95 0.99 0.999 0.9995
2

0.42

0.44

0.46

0.48

0.50

0.52

Fin
al

 Te
st

 A
cc

ur
ac

y no warm start

warm start

CIFAR-100 (ViT-Tiny)

0.9 0.95 0.99 0.999 0.9995
2

0.1

0.2

0.3

0.4

0.5

Fin
al

 Te
st

 A
cc

ur
ac

y no warm start

warm start

Tiny Imagenet (VGG-16)

10 3 10 4 10 5 10 6 10 7 10 8
0.65

0.70

0.75

0.80

0.85

Fin
al

 Te
st

 A
cc

ur
ac

y no warm start

warm start

CIFAR-10 (ResNet18)

10 3 10 4 10 5 10 6 10 7 10 8

0.42

0.44

0.46

0.48

0.50

0.52

Fin
al

 Te
st

 A
cc

ur
ac

y no warm start

warm start

CIFAR-100 (ViT-Tiny)

10 3 10 4 10 5 10 6 10 7 10 8

0.1

0.2

0.3

0.4

0.5

Fin
al

 Te
st

 A
cc

ur
ac

y no warm start

warm start

Tiny Imagenet (VGG-16)

Figure 4. Effect of Optimizer Parameters on Generalization.
Results indicate marginal improvements with varying β1 and β2.
Larger epsilon values appear to alleviate generalization loss but
are insufficient to entirely address generalization loss.

implementation details (Hessel et al., 2018), possibly con-
tributing to this loss of generalizability. However, despite
their benefits, they were insufficient to entirely address gen-
eralization loss.

3.4. Enhancing Trainability is Insufficient for
Maintaining Generalization Ability

Having observed a significant degradation in networks’ gen-
eralization ability from warm-starting, we now investigate
whether existing methods can mitigate this decline. We
categorized existing methods into three groups: General-
izability, Trainability, and Re-initialization. Generalizabil-
ity includes approaches that aim to prevent overfitting and
enhance generalization. Trainability involves methods de-

signed to consistently minimize the training loss, which has
been established to address the plasticity loss on the training
side. Re-initialization encompasses methods that reinitialize
parts of the network to their initial weight distribution.

We conduct these evaluations under the most challenging
conditions observed in our earlier analysis: a subset ratio
of 0.1 and a label noise ratio of 0.5. We include a vanilla
warm-started network as a lower bound and a fresh network
without warm-starting as an upper bound.

Generalizability. We investigated widely used techniques,
such as L2 regularization (Krogh & Hertz, 1991) and Data
Augmentation (Takahashi et al., 2019). As illustrated in
Figure 3, L2 regularization demonstrated improved gener-
alization across datasets, leading to enhanced test accuracy.
Data Augmentation proved its effectiveness, yielding results
similar to those of models without warm-starting. However,
a performance gap persists between warm-started models
with Data Augmentation and their non-warm-started coun-
terparts, indicating persistent generalization loss.

Trainability. We explored various trainability methods, in-
cluding Spectral decoupling (Pezeshki et al., 2021), Regen-
erative regularization (Kumar et al., 2023b), ReDo (Sokar
et al., 2023), and CReLU (Abbas et al., 2023). While these
methods accelerated the convergence of training loss, none
of them enhanced generalization on unseen data.

We also examined the relationship between generalization
performance and potential indicators of plasticity loss, such
as weight magnitude, active unit fraction, and feature rank.
However, none of these metrics show a consistent corre-
lation with test accuracy, thus not elucidating the loss of
generalization ability. For details, refer to Appendix C.

Re-initialization. We explore two methods: Head Reset
(Nikishin et al., 2022) and Shrink & Perturb (Ash & Adams,
2020). For Head Reset, the MLP network after the en-
coder is reinitialized to its initial weight. While Head Re-

5

Slow and Steady Wins the Race: Maintaining Plasticity with Hare and Tortoise Networks

set has shown its effectiveness in RL literature (Nikishin
et al., 2022), it only improves generalization over the other
baselines in the VGG architecture, where the head network
contains a relatively larger fraction of the total parameters
(18%). This observation aligns with RL setups, where nearly
90% of the parameters are included in the Head network
(D’Oro et al., 2022). Therefore, we conjecture that Head
Reset may not scale effectively with architectures featuring
larger and deeper encoders.

Shrink & Perturb involve shrinking the network’s weights to-
wards their initial values and perturbing with Gaussian noise.
For simplicity, we focus solely on the shrinking process with
a shrink ratio set to 0.8, where 80% of the weights come
from the initial values and 20% from the current weights.
For all experiments, Shrink & Perturb significantly reduce
plasticity loss and enhance generalization across all datasets.
Further incorporation of standard generalization techniques
(L2 + Aug + Shrink & Perturb) narrows the gap between
this approach and training a fresh network without warm-
starting. For details on each method, see Appendix A.4.

In summary, our findings reveal that while loss of trainability
was often observed in small neural networks with prolonged
training (Lyle et al., 2022; Abbas et al., 2023; Kumar et al.,
2023b), modern neural networks generally do not suffer
from this issue. Subsequently, enhancing trainability does
not necessarily improve generalization in these cases. While
certain generalization strategies (i.e., L2 regularization, data
augmentation) showed moderate success, integrating them
with weight reinitialization methods, particularly Shrink &
Perturb, proved to be most effective.

However, naive reinitialization has certain limitations.
While reinitialization recovers network plasticity, it concur-
rently loses valuable information. This drawback is particu-
larly prominent when data access is limited due to privacy
constraints or during the training process of larger models,
where it exacerbates computational costs.

4. Method
4.1. Hare & Tortoise Architecture

To maintain network plasticity while retaining valuable in-
formation, we present the Hare & Tortoise architecture, in-
spired by the complementary learning systems in the human
brain (McClelland et al., 1995). This architecture comprises
two networks: the Hare network for rapid adaptation and
the Tortoise network for stable knowledge consolidation.

Hare network (h): Resembling the hippocampus, the Hare
network rapidly adapts to new data by adjusting its parame-
ters based on input-output pairs at each training step.

Tortoise network (t): Imitating the neocortex, the Tortoise
network consistently accumulates knowledge over time by

momentum updates (Tarvainen & Valpola, 2017) from the
Hare network. This ensures slow and steady updates of
knowledge acquired from the Hare network.

4.2. Training Process

The training process of the Hare & Tortoise involves distinct
yet interconnected updates to the networks.

At each training step, the Hare network’s parameters, θh,
are updated using the gradient descent. Given an input x
and its corresponding output y, the network is updated as:

θh ← θh − α∇θhL(h(x; θh), y)

where α denotes the learning rate, and L is the loss function.

Subsequently, the parameters of the Tortoise network, θt,
are updated using an exponential moving average based on
the Hare network’s parameters:

θt ← µθt + (1− µ)θh

where µ denotes the momentum.

To maintain plasticity in the Hare network, we incorporate
a soft form of Re-initialization by periodically resetting its
parameters to the Tortoise network’s parameters:

θh ← θt

This updating scheme has a number of desirable properties.
The update rate for the Tortoise network µ gives a means
of controlling how far from the initialization the parame-
ters can deviate. By setting a small update rate (i.e., large
momentum value), the Tortoise network can gradually in-
corporate useful information from the Hare network. Since
the Hare network re-starts from the Tortoise weights upon
every reset, it can converge more quickly than if it had been
randomly initialized. Hard resets of the Hare network also
provide an opportunity to escape from bad local minima
which may contain spurious features.

The PyTorch-like pseudocode is described in Algorithm 1.

4.3. Implementation

In all experimental setups, we utilized the Tortoise network
for predictions, yielding stable and generalized outputs by
ensembling the Hare network’s parameters over time (Tar-
vainen & Valpola, 2017; Anonymous, 2023).

For our warm-starting and continual learning experiments,
we fixed the momentum value of µ = 0.999 and set the reset
interval to occur every 10 epoch across all experiments.

6

Slow and Steady Wins the Race: Maintaining Plasticity with Hare and Tortoise Networks

0 25 50 75 100
Epoch

0.80

0.85

0.90

0.95

Te
st

 A
cc

ur
ac

y

w/o warm start (+aug)

warm start (+aug)

CIFAR-10 (ResNet-18)
Hare Tortoise EMA Self Distill Head Reset Shrink Perturb

0 25 50 75 100
Epoch

0.48

0.52

0.56

0.60

Te
st

 A
cc

ur
ac

y w/o warm start (+aug)

warm start (+aug)

CIFAR-100 (ViT-Tiny)

0 25 50 75 100
Epoch

0.10

0.20

0.30

0.40

0.50

Te
st

 A
cc

ur
ac

y

w/o warm start (+aug)

warm start (+aug)

Tiny Imagenet (VGG-16)

Figure 5. Warm-Starting Results. This graph presents the effectiveness of Hare & Tortoise in warm-starting experiments, compared
to EMA, Self-Distillation, and Re-initialization methods. Hare & Tortoise shows superior performance in CIFAR-10 (ResNet-18) and
CIFAR-100 (ViT-Tiny), while reinitialization shows greater effectiveness in Tiny ImageNet (VGG-16) with severe generalization loss.

Algorithm 1 Hare & Tortoise Pseudocode (Pytorch-like)
h: hare network
t: tortoise network
m: momentum
r: reset interval
for step, (x, y) in enumerate(loader):

update hare network
logits = h(x)
loss = loss fn(logits, y)
loss.backward()
optimizer.step(h.params)
update tortoise network
h.parms = m*h.params + (1-m)*t.params
if step % r == 0:

h.params = t.params

In reinforcement learning setup, the Hare & Tortoise ar-
chitecture can be effortlessly integrated into the modern
algorithms that employ momentum target networks (D’Oro
et al., 2022; Schwarzer et al., 2023; Hansen et al., 2023;
Fujimoto et al., 2023). Here, the online network acts as
the Hare network, and the target network serves as the Tor-
toise network. This integration requires only a single line of
additional code, which periodically reinitializes the online
network to the target network. Following the previous se-
tups (D’Oro et al., 2022; Schwarzer et al., 2023), we used a
momentum value of µ = 0.995 and set the reset interval to
4000 for every gradient update step.

5. Experiments
We evaluate the effectiveness of Hare & Tortoise on main-
taining generalizability in three distinct scenarios: warm-
starting, continual learning, and reinforcement learning.

5.1. Warm-Starting

Following our warm-starting experiments in Section 3, we
assessed the Hare & Tortoise architecture against reinitial-

ization methods like Shrink & Perturb and Head Reset. We
integrated L2 Regularization and Data Augmentation in all
experiments due to their proven generalization benefits.

We also compared our method with Exponential Moving
Average (EMA) and Self-Distillation (Tarvainen & Valpola,
2017; Allen-Zhu & Li, 2020), to evaluate the impact of
reinitialization of the Hare network on the Tortoise net-
work. The Hare & Tortoise architecture is a unique form
of self-distillation, where the Tortoise guides the Hare to
not deviate, but allows more freedom to explore the opti-
mization landscape. For both EMA and Self-Distillation,
we maintained a constant momentum value of µ = 0.999,
and tuned the distillation strengths from {1, 5, 10}.

As illustrated in Figure 5, we observed that EMA consis-
tently outperformed the warm-start approach, particularly in
CIFAR-100 using ViT-Tiny architecture. This improved per-
formance is likely due to ViT’s convergence on sharp loss
curvature, which further benefits from EMA’s parameter
smoothing (Chen et al., 2021; Park & Kim, 2022). The Hare
& Tortoise consistently outperformed both EMA and Self-
Distillation, which verifies its effectiveness in maintaining
plasticity and encouraging the Hare network’s exploration
in the optimization landscape.

In comparison to other reinitialization strategies including
Shrink & Perturb, Hare & Tortoise not only outperformed
them but also surpassed the performance of fresh networks
in CIFAR-10 with ResNet-18 and CIFAR-100 with ViT-Tiny.
However, its effectiveness was less pronounced on Tiny
ImageNet with VGG-16. This implies that reinitialization
can be particularly beneficial in scenarios with substantial
generalization loss.

To further understand the Hare & Tortoise’s robustness, we
conducted an ablation study by varying its momentum value
and reset interval. The results, detailed in Appendix D,
indicate that Hare & Tortoise remains resilient to changes in
hyperparameters, with larger momentum values generally
improving performance.

7

Slow and Steady Wins the Race: Maintaining Plasticity with Hare and Tortoise Networks

(a)

(b)

Figure 6. Continual Learning Results. The dataset was divided into 10 chunks, each undergoing 100 epochs of training with label noise
decreasing from 0.5 to 0.0. (a) Shows outcomes with full dataset access, where Hare & Tortoise consistently outperform Shrink & Perturb
in CIFAR-10 and CIFAR-100, but are less effective in Tiny ImageNet with significant generalization loss. (b) Illustrates results under
limited access, with a buffer size of 5000. Here, Hare & Tortoise shows strong performance in CIFAR-10 and CIFAR-100 and narrows the
gap with Shrink & Perturb in Tiny ImageNet, demonstrating its effective knowledge retention.

5.2. Continual Learning

Although Hare & Tortoise architecture effectively prevented
plasticity loss in our warm-starting experiments, the Shrink
& Perturb showed notable effectiveness in Tiny ImageNet.
However, standard reinitialization methods face challenges
in continual learning scenarios, which causes abrupt drops
in online accuracy and increases computational costs for per-
formance recovery. Moreover, when data access is limited,
they risk losing valuable information as well.

To assess whether the Hare & Tortoise can overcome these
challenges, we extended our warm-starting experiments into
a continual learning framework, which extends the training
into 10 phases. Each phase had a fixed subset ratio of 0.1
and label noise was decreased from 0.5 to 0, using 100
epochs for training. Two data access scenarios were tested:
one with full dataset access and another with limited access
with a buffer size of 5000.

As depicted in Figure 6.(a), under full data access, Hare &
Tortoise excelled in CIFAR-10 and CIFAR-100, avoiding
the abrupt performance drops associated with reinitializa-
tion. However, in Tiny ImageNet, where generalization
loss is severe, reinitialization proved to be a more effective
choice, despite its periodic performance drops.

In the limited data access scenario (Figure 6.(b)), Hare &
Tortoise maintained strong performance in CIFAR-10 and
CIFAR-100. The gap between Hare & Tortoise and other
reinitialization strategies in Tiny ImageNet was less pro-

nounced, suggesting that while reinitialization has its ad-
vantages, it can also lead to the loss of useful information
for succeeding in future tasks. In contrast, Hare & Tortoise
exhibited improved long-term information retention through
effective knowledge consolidation.

5.3. Reinforcement Learning

Finally, we evaluate Hare & Tortoise (H&T) in reinforce-
ment learning setup, analyzing its performance with two
algorithms on the Atari-100K benchmark (Kaiser et al.,
2019). The first, DrQ (Kostrikov et al., 2020), follows
Mnih et al. (2015)’s architecture, featuring three convolu-
tional layers followed by two fully connected layers, and
includes random cropping augmentation. The second, BBF
(Schwarzer et al., 2023), uses a ResNet-style architecture
(Espeholt et al., 2018) with a custom reset protocol, higher
replay ratio, and its use of auxiliary self-supervised objec-
tive (Schwarzer et al., 2020).

We integrated Hare & Tortoise into these algorithms by
reinitializing the online network to the target network every
4000 steps, which only requires a single line of additional
code. Since the hyperparameters of the BBF were carefully
tuned based on reset intervals, we integrated Hare & Tor-
toise with reinitializations but intentionally excluded the
self-supervised objective. This decision was based on our
interpretation that while BBF’s self-supervised objective
aids in understanding temporal dynamics, it simultaneously
constrains the online network’s divergence from the momen-

8

Slow and Steady Wins the Race: Maintaining Plasticity with Hare and Tortoise Networks

Table 1. Atari-100k Results. BBF results without Hare & Tortoise come from the original paper (Schwarzer et al., 2023). All the other
experiments, including DrQ, were conducted based on their original code and averaged over 5 random seeds with a replay ratio of 2.

Algorithm Architecture S&P HR H&T SSL GPU hours IQM ↑ Median ↑ Mean ↑ OG ↓

DrQ (Kostrikov et al., 2020) 3-layer ConvNet

- - - -

0.5

0.243 0.193 0.468 0.642
✓ - - - 0.139 0.138 0.458 0.728
- - ✓ - 0.287 0.260 0.471 0.617
- 20k - - 0.332 0.254 0.694 0.580
- 40k - - 0.288 0.241 0.532 0.607
- 40k ✓ - 0.328 0.329 0.584 0.583

BBF (Schwarzer et al., 2023) 15-layer ResNet
✓ ✓ - - 1.4 0.826 0.711 1.737 0.397
✓ ✓ ✓ - 0.891 0.749 1.719 0.372
✓ ✓ - ✓ 2.8 0.940 0.755 2.175 0.377

tum target network, similar to Hare & Tortoise. Thus, we
aimed to isolate the effects of this constraint and assess the
effectiveness of Hare & Tortoise.

Table 1 presents our experimental results. Adding Hare &
Tortoise in DrQ led to a modest improvement in the median
score. However, the most effective approach was resetting
the head every 20,000 steps, likely due to the limited depth
of DrQ’s encoder and the head network’s significant pa-
rameter portion (90%). While a 40,000-step interval Head
Reset wasn’t wholly effective in mitigating plasticity loss,
combining it with Hare & Tortoise achieved comparable
performance to the 20,000-step interval Head Reset.

For BBF, adding Hare & Tortoise significantly improved
both IQM and OG scores, without incurring any extra com-
putational costs. While Hare & Tortoise’s performance
on IQM and Mean scores was lower compared to using
Self-Supervised Learning objective (SSL), it surpassed OG
scores and required only half of the computational resources.
It’s important to note that we did not adjust any original hy-
perparameters, including the momentum value. Therefore,
with further optimization and exploration, we believe that
Hare & Tortoise has great potential to effectively alleviate
plasticity loss.

6. Conclusion and Future Work
In the research community, there’s a common belief that
enhancing a neural network’s trainability should naturally
improve its generalization ability in continuous learning
scenarios. Past studies have shown that as neural networks
are continually trained over extended periods, they may
struggle to minimize training loss, leading to diminished
generalization. Consequently, efforts have been made to
bolster generalizability by focusing on improving trainabil-
ity (Abbas et al., 2023; Lyle et al., 2022; Sokar et al., 2023).
However, these studies often employ smaller network archi-
tectures (e.g., 3 to 5 layers) compared to today’s deep and
large networks.

Our study investigates whether trainability concerns persist
with modern datasets and architectures. By revisiting warm-
starting experiments (Ash & Adams, 2020) with ResNet-
18 (He et al., 2016), ViT-Tiny (Dosovitskiy et al., 2020),
and VGG-16 (Simonyan & Zisserman, 2014), we found no
trainability issues even with prolonged training on small,
noisy datasets. Furthermore, methods aimed at enhancing
trainability did not improve generalization and often led to
overfitting. Surprisingly, simply reinitializing the network
proved effective, despite the potential risk of losing valuable
knowledge.

To address this, we developed the Hare & Tortoise algo-
rithm. It combines two types of networks: the Hare, which
optimizes weights rapidly, and the Tortoise, which updates
weights slowly by momentum average. The Tortoise’s
slowly updated weights serve as starting points for periodic
resets, which helps the Hare to rapidly adapt and escape
from bad local minima. It outperformed Shrink & Perturb
in continual learning experiments and enhanced the efficacy
of state-of-the-art reinforcement learning algorithms.

However, there’s still much room to explore. A key unan-
swered question is why warm-started models fail to general-
ize new tasks. The Hare & Tortoise offers valuable insights
for this question; the Tortoise’s effective performance im-
plies that certain regions in the optimization landscape can
perform well on current tasks while preserving their plastic-
ity to generalize on new tasks. Future improvements should
focus on identifying and exploiting these regions, possibly
reducing or removing the need for hard reinitializations.

7. Broader Impact
Our research focuses on enhancing neural network plasticity,
which is highly promising for robotics. This enhancement
allows intelligent robots to effectively learn, adapt, and
respond to dynamic environments, leading to improved effi-
ciency in manufacturing, logistics, and autonomous driving.

Additionally, our work has potential benefits for reducing

9

Slow and Steady Wins the Race: Maintaining Plasticity with Hare and Tortoise Networks

the environmental footprint associated with training large
AI models like GPT-4 and Gemini. By enhancing their plas-
ticity, our research aims to minimize the need for resource-
intensive retraining, thereby promoting a more sustainable
and eco-friendly approach to AI model development.

References
Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B.,

Mironov, I., Talwar, K., and Zhang, L. Deep learning
with differential privacy. In Proceedings of the 2016 ACM
SIGSAC conference on computer and communications
security, pp. 308–318, 2016.

Abbas, Z., Zhao, R., Modayil, J., White, A., and Machado,
M. C. Loss of plasticity in continual deep reinforcement
learning. arXiv preprint arXiv:2303.07507, 2023.

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,
Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Allen-Zhu, Z. and Li, Y. Towards understanding ensem-
ble, knowledge distillation and self-distillation in deep
learning. arXiv preprint arXiv:2012.09816, 2020.

Anand, N. and Precup, D. Prediction and control
in continual reinforcement learning. arXiv preprint
arXiv:2312.11669, 2023.

Anonymous. Exponential moving average of weights
in deep learning: Dynamics and benefits. Submit-
ted to Transactions on Machine Learning Research,
2023. URL https://openreview.net/forum?
id=2M9CUnYnBA. Under review.

Arani, E., Sarfraz, F., and Zonooz, B. Learning fast,
learning slow: A general continual learning method
based on complementary learning system. arXiv preprint
arXiv:2201.12604, 2022.

Asadi, K., Fakoor, R., and Sabach, S. Resetting the op-
timizer in deep rl: An empirical study. arXiv preprint
arXiv:2306.17833, 2023.

Ash, J. and Adams, R. P. On warm-starting neural network
training. Advances in neural information processing sys-
tems, 33:3884–3894, 2020.

Berariu, T., Czarnecki, W., De, S., Bornschein, J., Smith, S.,
Pascanu, R., and Clopath, C. A study on the plasticity of
neural networks. arXiv preprint arXiv:2106.00042, 2021.

Chen, X., Hsieh, C.-J., and Gong, B. When vision trans-
formers outperform resnets without pre-training or strong
data augmentations. arXiv preprint arXiv:2106.01548,
2021.

Dohare, S., Sutton, R. S., and Mahmood, A. R. Continual
backprop: Stochastic gradient descent with persistent
randomness. arXiv preprint arXiv:2108.06325, 2021.

Dohare, S., Hernandez-Garcia, J. F., Rahman, P., Sutton,
R. S., and Mahmood, A. R. Maintaining plasticity in deep
continual learning. arXiv preprint arXiv:2306.13812,
2023.

D’Oro, P., Schwarzer, M., Nikishin, E., Bacon, P.-L., Belle-
mare, M. G., and Courville, A. Sample-efficient rein-
forcement learning by breaking the replay ratio barrier. In
Deep Reinforcement Learning Workshop NeurIPS 2022,
2022.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Duan, Y., Schulman, J., Chen, X., Bartlett, P. L., Sutskever,
I., and Abbeel, P. Rl 2̂: Fast reinforcement learn-
ing via slow reinforcement learning. arXiv preprint
arXiv:1611.02779, 2016.

Elsayed, M. and Mahmood, A. R. Addressing loss of plas-
ticity and catastrophic forgetting in continual learning.
arXiv preprint arXiv:2404.00781, 2024.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih,
V., Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning,
I., et al. Impala: Scalable distributed deep-rl with im-
portance weighted actor-learner architectures. In Interna-
tional conference on machine learning, pp. 1407–1416.
PMLR, 2018.

Frankland, P. W., Köhler, S., and Josselyn, S. A. Hippocam-
pal neurogenesis and forgetting. Trends in neurosciences,
36(9):497–503, 2013.

Frati, L., Traft, N., Clune, J., and Cheney, N. Reset it and for-
get it: Relearning last-layer weights improves continual
and transfer learning. arXiv preprint arXiv:2310.07996,
2023.

Fujimoto, S., Chang, W.-D., Smith, E. J., Gu, S. S., Precup,
D., and Meger, D. For sale: State-action representation
learning for deep reinforcement learning. arXiv preprint
arXiv:2306.02451, 2023.

Glorot, X. and Bengio, Y. Understanding the difficulty
of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on
artificial intelligence and statistics, pp. 249–256. JMLR
Workshop and Conference Proceedings, 2010.

10

https://openreview.net/forum?id=2M9CUnYnBA
https://openreview.net/forum?id=2M9CUnYnBA

Slow and Steady Wins the Race: Maintaining Plasticity with Hare and Tortoise Networks

Gogianu, F., Berariu, T., Rosca, M. C., Clopath, C., Busoniu,
L., and Pascanu, R. Spectral normalisation for deep
reinforcement learning: an optimisation perspective. In
International Conference on Machine Learning, pp. 3734–
3744. PMLR, 2021.

Gomez-Villa, A., Twardowski, B., Wang, K., and van de
Weijer, J. Plasticity-optimized complementary networks
for unsupervised continual learning. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Com-
puter Vision, pp. 1690–1700, 2024.

Google, G., Anil, R., Borgeaud, S., Wu, Y., Alayrac, J.-B.,
Yu, J., Soricut, R., Schalkwyk, J., Dai, A. M., Hauth, A.,
et al. Gemini: a family of highly capable multimodal
models. arXiv preprint arXiv:2312.11805, 2023.

Gravitz, L. The forgotten part of memory. Nature, 571
(7766):S12–S12, 2019.

Hansen, N., Su, H., and Wang, X. Td-mpc2: Scalable, ro-
bust world models for continuous control. arXiv preprint
arXiv:2310.16828, 2023.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the IEEE inter-
national conference on computer vision, pp. 1026–1034,
2015.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Os-
trovski, G., Dabney, W., Horgan, D., Piot, B., Azar, M.,
and Silver, D. Rainbow: Combining improvements in
deep reinforcement learning. In Proceedings of the AAAI
conference on artificial intelligence, volume 32, 2018.

Kaiser, L., Babaeizadeh, M., Milos, P., Osinski, B., Camp-
bell, R. H., Czechowski, K., Erhan, D., Finn, C., Koza-
kowski, P., Levine, S., et al. Model-based reinforce-
ment learning for atari. arXiv preprint arXiv:1903.00374,
2019.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kostrikov, I., Yarats, D., and Fergus, R. Image augmentation
is all you need: Regularizing deep reinforcement learning
from pixels. arXiv preprint arXiv:2004.13649, 2020.

Krizhevsky, A. Learning multiple layers of features from
tiny images. Technical report, Citeseer, 2009.

Krogh, A. and Hertz, J. A simple weight decay can im-
prove generalization. Advances in neural information
processing systems, 4, 1991.

Kumar, A., Agarwal, R., Ghosh, D., and Levine, S. Implicit
under-parameterization inhibits data-efficient deep rein-
forcement learning. arXiv preprint arXiv:2010.14498,
2020.

Kumar, S., Marklund, H., Rao, A., Zhu, Y., Jeon, H. J., Liu,
Y., and Van Roy, B. Continual learning as computation-
ally constrained reinforcement learning. arXiv preprint
arXiv:2307.04345, 2023a.

Kumar, S., Marklund, H., and Van Roy, B. Maintaining
plasticity via regenerative regularization. arXiv preprint
arXiv:2308.11958, 2023b.

Kumaran, D., Hassabis, D., and McClelland, J. L. What
learning systems do intelligent agents need? complemen-
tary learning systems theory updated. Trends in cognitive
sciences, 20(7):512–534, 2016.

Laskin, M., Lee, K., Stooke, A., Pinto, L., Abbeel, P., and
Srinivas, A. Reinforcement learning with augmented data.
Advances in neural information processing systems, 33:
19884–19895, 2020.

Le, Y. and Yang, X. Tiny imagenet visual recognition chal-
lenge. CS 231N, 7(7):3, 2015.

LeCun, Y., Cortes, C., and Burges, C. The mnist database
of handwritten digits. http://yann.lecun.com/exdb/mnist/,
1998.

Lee, H., Cho, H., Kim, H., Gwak, D., Kim, J., Choo, J.,
Yun, S.-Y., and Yun, C. Plastic: Improving input and
label plasticity for sample efficient reinforcement learn-
ing. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

Lewandowski, A., Tanaka, H., Schuurmans, D., and
Machado, M. C. Curvature explains loss of plasticity.
arXiv preprint arXiv:2312.00246, 2023.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. arXiv preprint arXiv:1711.05101, 2017.

Lyle, C., Rowland, M., and Dabney, W. Understanding and
preventing capacity loss in reinforcement learning. Proc.
the International Conference on Learning Representa-
tions (ICLR), 2022.

Lyle, C., Zheng, Z., Nikishin, E., Pires, B. A., Pascanu,
R., and Dabney, W. Understanding plasticity in neural
networks. Proc. the International Conference on Machine
Learning (ICML), 2023.

11

Slow and Steady Wins the Race: Maintaining Plasticity with Hare and Tortoise Networks

Lyle, C., Zheng, Z., Khetarpal, K., van Hasselt, H., Pas-
canu, R., Martens, J., and Dabney, W. Disentangling
the causes of plasticity loss in neural networks. arXiv
preprint arXiv:2402.18762, 2024.

McClelland, J. L., McNaughton, B. L., and O’Reilly, R. C.
Why there are complementary learning systems in the hip-
pocampus and neocortex: insights from the successes and
failures of connectionist models of learning and memory.
Psychological review, 102(3):419, 1995.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. nature, 518(7540):
529–533, 2015.

Nikishin, E., Schwarzer, M., D’Oro, P., Bacon, P.-L., and
Courville, A. The primacy bias in deep reinforcement
learning. 2022.

Noukhovitch, M., Lavoie, S., Strub, F., and Courville, A.
Language model alignment with elastic reset. arXiv
preprint arXiv:2312.07551, 2023.

Park, N. and Kim, S. How do vision transformers work?
arXiv preprint arXiv:2202.06709, 2022.

Pezeshki, M., Kaba, O., Bengio, Y., Courville, A. C., Pre-
cup, D., and Lajoie, G. Gradient starvation: A learning
proclivity in neural networks. Advances in Neural Infor-
mation Processing Systems, 34:1256–1272, 2021.

Pham, Q., Liu, C., and Hoi, S. Dualnet: Continual learning,
fast and slow. Advances in Neural Information Processing
Systems, 34:16131–16144, 2021.

Pham, Q., Liu, C., Sahoo, D., and Hoi, S. C. Learning fast
and slow for online time series forecasting. arXiv preprint
arXiv:2202.11672, 2022.

Pritzel, A., Uria, B., Srinivasan, S., Badia, A. P., Vinyals,
O., Hassabis, D., Wierstra, D., and Blundell, C. Neural
episodic control. In International conference on machine
learning, pp. 2827–2836. PMLR, 2017.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh,
S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bern-
stein, M., et al. Imagenet large scale visual recognition
challenge. International journal of computer vision, 115:
211–252, 2015.

Ryan, T. J. and Frankland, P. W. Forgetting as a form of
adaptive engram cell plasticity. Nature Reviews Neuro-
science, 23(3):173–186, 2022.

Schwarzer, M., Anand, A., Goel, R., Hjelm, R. D., Courville,
A., and Bachman, P. Data-efficient reinforcement learn-
ing with self-predictive representations. arXiv preprint
arXiv:2007.05929, 2020.

Schwarzer, M., Ceron, J. S. O., Courville, A., Bellemare,
M. G., Agarwal, R., and Castro, P. S. Bigger, better,
faster: Human-level atari with human-level efficiency.
In International Conference on Machine Learning, pp.
30365–30380. PMLR, 2023.

Shang, W., Sohn, K., Almeida, D., and Lee, H. Under-
standing and improving convolutional neural networks
via concatenated rectified linear units. In international
conference on machine learning, pp. 2217–2225. PMLR,
2016.

Shin, H., Lee, J. K., Kim, J., and Kim, J. Continual learning
with deep generative replay. Advances in neural informa-
tion processing systems, 30, 2017.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Smith, J. S., Tian, J., Halbe, S., Hsu, Y.-C., and Kira, Z.
A closer look at rehearsal-free continual learning. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 2409–2419, 2023.

Sodhani, S., Chandar, S., and Bengio, Y. Toward training
recurrent neural networks for lifelong learning. Neural
computation, 32(1):1–35, 2020.

Sokar, G., Agarwal, R., Castro, P. S., and Evci, U. The dor-
mant neuron phenomenon in deep reinforcement learning.
arXiv preprint arXiv:2302.12902, 2023.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Takahashi, R., Matsubara, T., and Uehara, K. Data aug-
mentation using random image cropping and patching for
deep cnns. IEEE Transactions on Circuits and Systems
for Video Technology, 30(9):2917–2931, 2019.

Tarvainen, A. and Valpola, H. Mean teachers are better role
models: Weight-averaged consistency targets improve
semi-supervised deep learning results. Advances in neural
information processing systems, 30, 2017.

Tesauro, G. et al. Temporal difference learning and td-
gammon. Communications of the ACM, 38(3):58–68,
1995.

12

Slow and Steady Wins the Race: Maintaining Plasticity with Hare and Tortoise Networks

Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles,
A., and Jégou, H. Training data-efficient image transform-
ers & distillation through attention. In International con-
ference on machine learning, pp. 10347–10357. PMLR,
2021.

Xiao, L., Pennington, J., and Schoenholz, S. Disentangling
trainability and generalization in deep neural networks.
In International Conference on Machine Learning, pp.
10462–10472. PMLR, 2020.

Xu, G., Zheng, R., Liang, Y., Wang, X., Yuan, Z., Ji, T.,
Luo, Y., Liu, X., Yuan, J., Hua, P., et al. Drm: Master-
ing visual reinforcement learning through dormant ratio
minimization. arXiv preprint arXiv:2310.19668, 2023.

You, Y., Li, J., Reddi, S., Hseu, J., Kumar, S., Bhojanapalli,
S., Song, X., Demmel, J., Keutzer, K., and Hsieh, C.-J.
Large batch optimization for deep learning: Training bert
in 76 minutes. arXiv preprint arXiv:1904.00962, 2019.

Zaidi, S., Berariu, T., Kim, H., Bornschein, J., Clopath, C.,
Teh, Y. W., and Pascanu, R. When does re-initialization
work? In Proceedings on, pp. 12–26. PMLR, 2023.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O.
Understanding deep learning (still) requires rethinking
generalization. Communications of the ACM, 64(3):107–
115, 2021.

Zhou, H., Vani, A., Larochelle, H., and Courville, A. Fortu-
itous forgetting in connectionist networks. arXiv preprint
arXiv:2202.00155, 2022.

Zilly, J., Achille, A., Censi, A., and Frazzoli, E. On plastic-
ity, invariance, and mutually frozen weights in sequential
task learning. Advances in Neural Information Processing
Systems, 34:12386–12399, 2021.

13

Slow and Steady Wins the Race: Maintaining Plasticity with Hare and Tortoise Networks

A. Implementation Details for Warm-Starting
This section outlines the implementation details of our exploration into the impact of warm-starting on neural network
performance, as discussed in Section 3. Our study encompasses a variety of datasets and neural network architectures.

A.1. Datasets

Our study utilized four datasets, each with distinct complexity and characteristics, to thoroughly evaluate the effects of
warm-starting. The following datasets were used:

MNIST (LeCun et al., 1998): Contains 70,000 grayscale images (60,000 for training, 10,000 for testing), with each image
being a 28x28 pixel representation of handwritten digits across 10 classes. MNIST is a basic dataset commonly used to
benchmark machine learning algorithms due to its simplicity.

CIFAR-10 (Krizhevsky, 2009): Consists of 60,000 color images (50,000 for training, 10,000 for testing) across 10 classes,
each image sized at 32x32 pixels. This dataset features objects and animals, offering a higher level of classification challenge
than MNIST because of its color diversity and intricate patterns.

CIFAR-100 (Krizhevsky, 2009): Similar in structure to CIFAR-10 but with 100 classes, totaling the same number of 32x32
color images but divided among more categories, with each class having 600 images. CIFAR-100 raises the complexity by
requiring finer differentiation between a broader array of classes.

Tiny ImageNet: A scaled-down version of the ImageNet dataset (Russakovsky et al., 2015), Tiny ImageNet includes
100,000 training and 10,000 testing images, resized to 64x64 pixels, across 200 classes. It challenges models on a much
wider range of classes, significantly more than the MNIST or CIFAR datasets.

Table 2. Description of Dataset.

Datasets MNIST CIFAR-10 CIFAR-100 Tiny ImageNet

Type Grayscale Color Color Color
Image size 28× 28 32× 32 32× 32 64× 64
Classes 10 10 100 200
Train size 70,000 50,000 50,000 10,0000
Test size 10,000 10,000 10,000 10,000

A.2. Architectures

In our research, we employed well-known neural network architectures, each paired with a specific benchmark dataset.
These combinations include:

3-layer MLP: Used for analyzing the MNIST dataset, this architecture consisted of a 3-layer Multi-Layer Perceptron (MLP).
Each hidden layer contained 100 units, and the model comprised a backbone (first and second layers) and a head (last fully
connected layer). Hyperparameters for this model included a learning rate of 0.001, a weight decay of 0.0001, and batch
normalization in the backbone.

ResNet-18 (He et al., 2016): Employed for CIFAR-10, this architecture is known for its deep residual learning framework
and residual connections. To optimize for computational efficiency and input resolution, we removed the stem layers and
utilized specific hyperparameters, including a learning rate of 0.001, a weight decay of 0.00001, and batch normalization.

ViT-Tiny (Dosovitskiy et al., 2020): Utilized for CIFAR-100, this model was adapted from the original DeiT-Ti model
(Touvron et al., 2021). It featured a 4x4 patch size, an embedding dimension of 192, three attention heads, and a depth of
twelve layers. We used a learning rate of 0.003, weight decay of 0.05, layer normalization, and a dropout rate of 0.1.

VGG-16 (Simonyan & Zisserman, 2014): Selected for Tiny ImageNet, this model is known for its traditional ConvNet
architecture, comprising several consecutive convolutional layers followed by fully connected layers with hidden dimensions
of 1024. Hyperparameters included a learning rate of 0.001, weight decay of 0.0001, batch normalization, and no dropout.

Learning rates and weight decay were meticulously determined through grid search.

14

Slow and Steady Wins the Race: Maintaining Plasticity with Hare and Tortoise Networks

A.3. Training Details

In this section, we provide a comprehensive overview of the hyperparameters and configurations for each baseline model.
We begin by presenting the base hyperparameters, which are consistently applied across all models and experiments. These
global hyperparameters are summarized in Table 3.

Table 3. Base Hyperparameters for Warm-Starting.

Hyperparameter Value

Epochs 100
Optimizer AdamW
Optimizer Hyperparameters (β1, β2) (0.9, 0.999)
Batch Size 256
Learning Rate Scheduler Warmup
Warmup Ratio 0.1
Initial Learning Rate 0.0
Gradient Clip. 0.5

Our warm-starting approach, following the methodology outlined by Ash & Adams (2020), involves initializing the network
with subsets of the original dataset. These subsets are created at ratios of 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, and 1.0. To ensure an
equivalent number of updates across different initializations, we adjust the training epochs for each subset, setting them at
1000, 500, 250, 166, 125, and 100, respectively. Furthermore, we incorporate label noise into our experiments as described
by Zhang et al. (2021). This entails replacing the original labels with uniformly distributed random labels.

To ensure the robustness and reliability of our results, each experimental setup is repeated with multiple random seeds.
Specifically, we utilize 5 random seeds for all datasets and models, except for Tiny ImageNet, where we employ 3 random
seeds for computational efficiency.

For all experiments, we used an NVIDIA RTX 3090 GPU for neural network training and a 32-core AMD EPYC 7502 CPU
for multi-threaded tasks.

15

Slow and Steady Wins the Race: Maintaining Plasticity with Hare and Tortoise Networks

A.4. Baseline Methods

In this section, we provide details of baseline methods and the hyperparameters we used in Section 3.4.

L2 Regularization: L2 Regularization is a widely adopted technique in neural network training. It works by adding
a penalty term to the loss function, which is proportional to the square of the magnitude of the network weights. This
penalty encourages the model to learn simpler patterns, thus increasing generalizability. In our experiments, we tested L2
regularization with varying intensities {1.0, 0.1, 0.01, 0.001, 0.0001}.

Data Augmentation: We applied data augmentation techniques, including horizontal flipping and random cropping with
4-pixel padding, to the original datasets for improved model generalization (Laskin et al., 2020; Kostrikov et al., 2020).

Concatenated Rectified Linear Units (CReLU): CReLU is an activation function introduced by Shang et al. (2016), which
combines the positive and negative parts of the ReLU function as [ReLU(x),−ReLU(−x)]. It has been demonstrated to be
effective in preserving trainability in continual reinforcement learning Abbas et al. (2023). We incorporated CReLU in the
head of each model, reducing the parameter count by half in each hidden layer. For the 3-Layer MLP, we added CReLU in
every activation function.

Recycling Dormant Neurons (ReDo): Sokar et al. (2023) identified the Dormant Neuron Phenomenon, where certain
neurons exhibit significantly reduced activity levels during training, negatively impacting trainability. ReDo periodically
scans all layers for τ -dormant neurons, reinitializes their weights, and sets their outgoing weights to zero. We tested various
τ values including {0.01, 0.02, 0.05, 0.1, 0.2, 0.5}, with reinitialization applied every 5 epochs.

Regenerative Regularization (Regen): Developed by Kumar et al. (2023b), this method embeds L2 regularization towards
initial parameters in the loss function. It has shown effectiveness in retaining plasticity during continual learning by implicitly
and smoothly resetting low-utility weights. We tested different regeneration rates {1.0, 0.1, 0.01, 0.001, 0.0001}, and used
the best value for each experiment.

Spectral Decoupling (Spectral): Spectral Decoupling, as discussed by Pezeshki et al. (2021), addresses the Gradient
Starvation issue in over-parameterized neural networks. Gradient Starvation is a phenomenon in which the network
disproportionately focuses on a few features, neglecting others which leads to sub-optimal utilization of predictive features
and affects trainability. Spectral Decoupling adds an L2 penalty to the network’s logits, promoting a more balanced feature
learning. We optimized the spectral rate from various values {1.0, 0.1, 0.01, 0.001, 0.0001, 0.00001}.

Shrink & Perturb: The study by Ash & Adams (2020) discovered that training neural networks with only half of the dataset
initially can negatively affect their generalizability. To address this, they introduced the Shrink & Perturb method. This
approach involves periodically reducing the current weights (shrinking) and introducing small random noises (perturbation).
In our experiment, we tested shrinkage values of {0.0, 0.2, 0.4, 0.6, 0.8, 1.0} and used the optimal value to be 0.8. This
process was used before proceeding to the subsequent training phase.

Head Reset: The Primacy Bias refers to an agent’s tendency to overfit earlier experiences. This often results in a loss
of learning ability in Reinforcement Learning, as described by (Nikishin et al., 2022). To address this issue, it has been
discovered that regularly resetting the agent’s head can be effective. In our experiments, we reinitialized the head network
before proceeding to the subsequent training phase.

16

Slow and Steady Wins the Race: Maintaining Plasticity with Hare and Tortoise Networks

B. Experimental Results of Warm-Starting
B.1. Train and Test Accuracies

In Section 3, we detail our warm-start experiments, which assess model performance across various subset ratios and label
noise levels, with results summarized in Figure 2.(c). The experiments in Table 4 yield near-perfect training accuracies
for MNIST, CIFAR-10, and Tiny ImageNet, as shown in Table 1, indicating robust training irrespective of subset or noise
variations. CIFAR-100 also demonstrates high training accuracy across on par with a freshly initialized network.

However, Table 5 highlights a decline in test accuracies compared to training, underscoring a gap between the models’ ability
to learn from training data and their generalization to unseen data. This contrast points to the challenges in maintaining
model generalizability across different experimental setups.

Table 4. Final Train Accuracy. The overall train accuracy is similar regardless of the subset ratio and label noise ratio.

Subset Ratio Label Noise MNIST (3-layer MLP) CIFAR-10 (ResNet-18) CIFAR-100 (ViT-Tiny) Tiny ImageNet (VGG-16)

0.1 0.0 1.00±0.0003 1.00±0.0006 0.91±0.0014 0.98±0.0011
0.1 0.1 1.00±0.0002 1.00±0.0002 0.91±0.0019 0.98±0.0018
0.1 0.2 1.00±0.0002 1.00±0.0004 0.91±0.0020 0.98±0.0002
0.1 0.3 1.00±0.0003 1.00±0.0004 0.91±0.0011 0.97±0.0001
0.1 0.4 1.00±0.0002 1.00±0.0008 0.91±0.0025 0.97±0.0012
0.1 0.5 1.00±0.0001 1.00±0.0005 0.91±0.0016 0.97±0.0003
0.2 0.0 1.00±0.0003 1.00±0.0006 0.91±0.0018 0.98±0.0005
0.2 0.1 1.00±0.0001 1.00±0.0003 0.91±0.0009 0.98±0.0004
0.2 0.2 1.00±0.0004 1.00±0.0005 0.91±0.0019 0.98±0.0003
0.2 0.3 1.00±0.0003 1.00±0.0007 0.91±0.0006 0.98±0.0003
0.2 0.4 1.00±0.0003 1.00±0.0008 0.91±0.0014 0.98±0.0003
0.2 0.5 1.00±0.0004 1.00±0.0004 0.91±0.0009 0.98±0.0006
0.4 0.0 1.00±0.0001 1.00±0.0008 0.92±0.0015 0.99±0.0002
0.4 0.1 1.00±0.0002 1.00±0.0009 0.92±0.0016 0.99±0.0002
0.4 0.2 1.00±0.0002 1.00±0.0005 0.92±0.0013 0.98±0.0001
0.4 0.3 1.00±0.0002 1.00±0.0007 0.91±0.0020 0.98±0.0003
0.4 0.4 1.00±0.0001 1.00±0.0006 0.91±0.0014 0.98±0.0002
0.4 0.5 1.00±0.0002 1.00±0.0002 0.91±0.0014 0.98±0.0004
0.6 0.0 1.00±0.0002 1.00±0.0004 0.92±0.0014 0.99±0.0007
0.6 0.1 1.00±0.0001 1.00±0.0006 0.92±0.0012 0.99±0.0005
0.6 0.2 1.00±0.0004 1.00±0.0003 0.92±0.0013 0.99±0.0008
0.6 0.3 1.00±0.0003 1.00±0.0004 0.92±0.0011 0.99±0.0006
0.6 0.4 1.00±0.0004 1.00±0.0012 0.91±0.0013 0.98±0.0004
0.6 0.5 1.00±0.0002 1.00±0.0008 0.91±0.0011 0.98±0.0007
0.8 0.0 1.00±0.0001 1.00±0.0005 0.92±0.0010 0.99±0.0006
0.8 0.1 1.00±0.0001 1.00±0.0006 0.92±0.0022 0.99±0.0008
0.8 0.2 1.00±0.0004 1.00±0.0002 0.92±0.0009 0.99±0.0004
0.8 0.3 1.00±0.0002 1.00±0.0005 0.92±0.0015 0.99±0.0002
0.8 0.4 1.00±0.0002 1.00±0.0007 0.92±0.0027 0.99±0.0006
0.8 0.5 1.00±0.0001 1.00±0.0007 0.91±0.0051 0.98±0.0003
1.0 0.0 1.00±0.0002 1.00±0.0006 0.93±0.0007 0.99±0.0005
1.0 0.1 1.00±0.0001 1.00±0.0009 0.92±0.0013 0.99±0.0004
1.0 0.2 1.00±0.0004 1.00±0.0003 0.92±0.0010 0.99±0.0005
1.0 0.3 1.00±0.0002 1.00±0.0005 0.92±0.0011 0.99±0.0004
1.0 0.4 1.00±0.0003 1.00±0.0015 0.92±0.0017 0.99±0.0004
1.0 0.5 1.00±0.0003 1.00±0.0009 0.91±0.0022 0.98±0.0002

17

Slow and Steady Wins the Race: Maintaining Plasticity with Hare and Tortoise Networks

Table 5. Final Test Accuracy. Unlike train accuracy, test accuracy showed different results depending on the subset ratio and label noise
ratio, indicating the existence of loss of generalizability.

Subset Ratio Label Noise MNIST (3-layer MLP) CIFAR-10 (ResNet-18) CIFAR-100 (ViT-Tiny) Tiny ImageNet (VGG-16)

0.1 0.0 0.98±0.0016 0.74±0.0023 0.45±0.0027 0.18±0.0036
0.1 0.1 0.97±0.0008 0.72±0.0050 0.45±0.0032 0.16±0.0029
0.1 0.2 0.97±0.0006 0.71±0.0123 0.44±0.0053 0.15±0.0039
0.1 0.3 0.97±0.0012 0.70±0.0054 0.44±0.0066 0.14±0.0057
0.1 0.4 0.97±0.0013 0.69±0.0095 0.44±0.0033 0.13±0.0043
0.1 0.5 0.97±0.0019 0.69±0.0067 0.44±0.0089 0.12±0.0046
0.2 0.0 0.98±0.0010 0.75±0.0047 0.45±0.0018 0.24±0.0008
0.2 0.1 0.97±0.0009 0.72±0.0049 0.44±0.0039 0.22±0.0034
0.2 0.2 0.97±0.0010 0.71±0.0047 0.44±0.0026 0.20±0.0036
0.2 0.3 0.97±0.0009 0.69±0.0028 0.44±0.0032 0.18±0.0020
0.2 0.4 0.97±0.0011 0.68±0.0032 0.44±0.0041 0.16±0.0039
0.2 0.5 0.97±0.0012 0.66±0.0057 0.44±0.0029 0.15±0.0032
0.4 0.0 0.98±0.0016 0.77±0.0038 0.47±0.0068 0.36±0.0012
0.4 0.1 0.97±0.0012 0.75±0.0027 0.46±0.0047 0.33±0.0015
0.4 0.2 0.97±0.0018 0.73±0.0035 0.44±0.0027 0.32±0.0026
0.4 0.3 0.97±0.0013 0.71±0.0053 0.44±0.0027 0.30±0.0061
0.4 0.4 0.97±0.0014 0.69±0.0066 0.44±0.0027 0.27±0.0026
0.4 0.5 0.97±0.0018 0.67±0.0092 0.43±0.0043 0.25±0.0029
0.6 0.0 0.98±0.0018 0.79±0.0042 0.48±0.0042 0.40±0.0032
0.6 0.1 0.97±0.0009 0.77±0.0045 0.47±0.0042 0.38±0.0012
0.6 0.2 0.97±0.0014 0.75±0.0024 0.46±0.0042 0.36±0.0032
0.6 0.3 0.97±0.0012 0.73±0.0020 0.44±0.0065 0.33±0.0041
0.6 0.4 0.97±0.0011 0.71±0.0048 0.44±0.0030 0.30±0.0016
0.6 0.5 0.97±0.0010 0.69±0.0040 0.43±0.0040 0.27±0.0005
0.8 0.0 0.98±0.0014 0.81±0.0045 0.50±0.0050 0.42±0.0045
0.8 0.1 0.97±0.0006 0.78±0.0050 0.48±0.0076 0.40±0.0019
0.8 0.2 0.97±0.0014 0.77±0.0026 0.46±0.0054 0.38±0.0024
0.8 0.3 0.97±0.0014 0.75±0.0063 0.46±0.0041 0.35±0.0023
0.8 0.4 0.97±0.0019 0.74±0.0033 0.45±0.0054 0.33±0.0037
0.8 0.5 0.97±0.0018 0.73±0.0075 0.43±0.0093 0.29±0.0022
1.0 0.0 0.98±0.0011 0.81±0.0053 0.51±0.0078 0.43±0.0009
1.0 0.1 0.97±0.0012 0.79±0.0060 0.49±0.0052 0.41±0.0019
1.0 0.2 0.97±0.0013 0.78±0.0071 0.48±0.0035 0.40±0.0081
1.0 0.3 0.97±0.0011 0.77±0.0075 0.47±0.0052 0.37±0.0022
1.0 0.4 0.97±0.0022 0.76±0.0051 0.45±0.0037 0.34±0.0029
1.0 0.5 0.97±0.0010 0.75±0.0076 0.40±0.0376 0.30±0.0033

18

Slow and Steady Wins the Race: Maintaining Plasticity with Hare and Tortoise Networks

B.2. Influence of Dataset on Loss of Generalizability

In this section, as an extension of our investigation into the effects of dataset size and label noise discussed in Section 3.2,
we aimed to understand the complex relationship between datasets and models in terms of generalization. To do this, we
conducted experiments in which we swapped the models for the CIFAR-10 and Tiny ImageNet datasets. Specifically, we
used ResNet-18 for Tiny ImageNet and VGG-16 for CIFAR-10. Each configuration was tested with two different random
seeds, and the results are illustrated in Figure 7.

0.10.20.40.60.81.0
Subset Ratio

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

La
be

l N
oi

se
 R

at
io

0.760.770.790.810.820.83

0.740.750.770.790.810.82

0.740.740.760.780.800.81

0.730.730.750.770.800.80

0.720.720.740.760.790.80

0.720.720.730.750.780.80

CIFAR-10 (VGG-16)

0.10.20.40.60.81.0
Subset Ratio

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

La
be

l N
oi

se
 R

at
io

0.190.260.360.420.440.46

0.170.230.340.380.410.43

0.150.220.320.370.390.41

0.140.190.290.340.370.39

0.130.160.270.320.340.37

0.120.140.240.290.310.33

Tiny ImageNet (ResNet-18)

0.72

0.74

0.76

0.78

0.80

0.82

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Figure 7. Datasets and Models Affect Plasticity. Results when swapping models between CIFAR-10 and Tiny ImageNet in the previous
setting. It highlights the similar aspects of loss of generalizability when datasets are paired with different models.

Figure 7 demonstrates how the choice of datasets and models impacts plasticity. Comparing these results to the earlier
findings shown in Figure 2.(c), we observed a consistent trend across datasets. Notably, Tiny ImageNet consistently exhibited
a more significant loss in generalization ability compared to CIFAR-10, regardless of the model used. This highlights the
critical role of the characteristics of the dataset in understanding the loss of generalizability.

B.3. Baseline Comparison: Train and Test Accuracies

Below are the final train and test accuracies from our experiments in Section 3.4.

Table 6. Final Train Accuracy. Warm-starting has no adverse effect on train accuracy in widely used architectures, achieving near-100%
accuracy on CIFAR-10 and Tiny ImageNet. This highlights the significant gap between trainability and generalizability.

Dataset Architecture Baseline Generalizability Trainability Re-initialization
WS w/o WS w/o WS + Aug L2 Aug Spectral Regen ReDo CReLU HR SnP SnP + L2 + Aug

CIFAR-10 ResNet-18 0.998 0.998 0.994 0.990 0.993 0.997 0.996 0.998 0.997 0.997 0.997 0.994
CIFAR-100 ViT-Tiny 0.907 0.912 0.852 0.865 0.867 0.913 0.906 0.908 0.890 0.911 0.915 0.872
T-ImageNet VGG-16 0.972 0.984 0.974 0.925 0.963 0.997 0.979 0.972 0.964 0.979 0.981 0.970

Table 7. Final Test Accuracy. While trainability enhancements can yield high training accuracies, the best test performance is achieved
by combining Shrink & Perturb with generalization techniques..

Dataset Architecture Baseline Generalizability Trainability Re-initialization
WS w/o WS w/o WS + Aug L2 Aug Spectral Regen ReDo CReLU HR SnP SnP + L2 + Aug

CIFAR-10 ResNet-18 0.704 0.835 0.924 0.735 0.840 0.705 0.701 0.682 0.678 0.693 0.771 0.910
CIFAR-100 ViT-Tiny 0.442 0.500 0.555 0.457 0.511 0.444 0.447 0.445 0.440 0.445 0.467 0.536
T-ImageNet VGG-16 0.115 0.439 0.463 0.221 0.227 0.118 0.127 0.118 0.118 0.177 0.229 0.376

In all experiments, training accuracy was on par with a freshly initialized model (w/o WS) for most methods, except for those
aimed at preventing overfitting. Table 5 displays the final test accuracy results. In these experiments, trainability methods
had limited impact, despite the increase in training accuracy in the Spectral Decomposition method. While generalizability
methods (L2, Data Augmentation) generally improved performance compared to the baseline (warm-start), the performance
was still significantly lower than freshly initialized models, indicating that these methods couldn’t fully mitigate plasticity
loss. Shrink & Perturb with generalizability methods outperformed all the other approaches, with its performance reaching
close to training the fresh networks.

19

Slow and Steady Wins the Race: Maintaining Plasticity with Hare and Tortoise Networks

C. Relationship between Generalizability and Potential Indicators
The precise mechanisms underlying the loss of plasticity in neural networks remain incompletely understood. However,
several factors have been proposed as potential indicators of this phenomenon. These factors include weight magnitude,
the distance of current weight values from their initial values, the number of zero gradients or non-active ReLU units, and
feature rank collapse, as highlighted in prior studies (Dohare et al., 2021; Zilly et al., 2021; Dohare et al., 2023; Kumar et al.,
2023a;b; Abbas et al., 2023; Lyle et al., 2023; Lewandowski et al., 2023).

This study delves into the relationship between these metrics and the generalization ability of neural networks. Specifically,
we focus on examining the Pearson correlation coefficients between these metrics and the final test accuracy, with each
metric being measured at the end of the warm-starting phase. As depicted in Figure 8, we observed that none of these
metrics exhibit a strong and consistent correlation across different datasets and architectures, although weight distance
showed a subtle trend. Below, we provide details on how each metric is calculated:

Weight Magnitude: This metric is calculated as the cumulative average of the squared weights across all layers of the
model, given by the formula:

norm(W) =
∑
l∈L

1

count(l)

∑
w∈l

w2

Here, L stands for the collection of layers, and w denotes the individual weights within layer l.

Weight Distance: It measures the mean squared distance between the current weights and their initial values for each layer:

dist(W) =
∑
l∈L

1

count(l)

∑
w∈l

(w − w0)
2

where w0 represents the initial weight value.

Zero Gradient Ratio: Indicates the percentage of zero gradients in the features produced by the backbone network’s output.

Feature Zero Activation Ratio: Measures the proportion of zero activations in the feature output of the backbone network.

Feature Rank (srank): Introduced by Kumar et al. (2020), this metric assesses the effective number of unique bases in the
feature matrix (Φ), which we calculated from the output of the backbone network. Given the ordered set of singular values
σ1(Φ) > σ2(Φ) > ... > σn(Φ), we measure it as:

srank(Φ) = min
k

(∑k
i=1 σi(Φ)∑n
j=1 σj(Φ)

)
≥ 1− δ

where δ is set to 0.01, following from Kumar et al. (2020).

20

Slow and Steady Wins the Race: Maintaining Plasticity with Hare and Tortoise Networks

Figure 8. Metrics. None of the metrics exhibit a strong and consistent correlation to generalization performance.

21

Slow and Steady Wins the Race: Maintaining Plasticity with Hare and Tortoise Networks

D. Ablation Studies
In our ablation studies, we explore the robustness of our proposed method by varying two hyperparameters: momentum
value and reset interval.

0.98 0.99 0.995 0.999 0.9995 0.9999
momentum

0.82

0.84

0.86

0.88

0.90

0.92

0.94

Fin
al

 Te
st

 A
cc

ur
ac

y no warm start (+aug)

warm start (+aug)

CIFAR-10 (ResNet18)

0.98 0.99 0.995 0.999 0.9995 0.9999
momentum

0.50

0.52

0.54

0.56

0.58

0.60

Fin
al

 Te
st

 A
cc

ur
ac

y

no warm start (+aug)

warm start (+aug)

CIFAR-100 (ViT-Tiny)

0.98 0.99 0.995 0.999 0.9995 0.9999
momentum

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Fin
al

 Te
st

 A
cc

ur
ac

y

no warm start (+aug)

warm start (+aug)

Tiny Imagenet (VGG-16)

0.5 1 2 5 10 20
reset interval

0.75

0.80

0.85

0.90

0.95

Fin
al

 Te
st

 A
cc

ur
ac

y

no warm start (+aug)

warm start (+aug)

CIFAR-10 (ResNet18)

0.5 1 2 5 10 20
reset interval

0.40

0.45

0.50

0.55

0.60

Fin
al

 Te
st

 A
cc

ur
ac

y no warm start (+aug)

warm start (+aug)

CIFAR-100 (ViT-Tiny)

0.5 1 2 5 10 20
reset_interval

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Fin
al

 Te
st

 A
cc

ur
ac

y

no warm start (+aug)

warm start (+aug)

Tiny Imagenet (VGG-16)

Figure 9. Ablation Study. The figure illustrates the robust performance of our method under variations in (a) momentum value and (b)
reset interval.

Our main observation is that regardless of the specific values chosen for these hyperparameters, our method consistently
delivers stable and improved performance compared to the warm-starting model. This stability and performance enhancement
are consistent across various datasets and architectures.

22

Slow and Steady Wins the Race: Maintaining Plasticity with Hare and Tortoise Networks

E. Reinforcement Learning Results

Table 8. Mean trajectory scores on Atari-100k Benchmark. We report the individual scores on the 26 Atari games. All the other
experiments, including DrQ, were conducted based on their original code and averaged over 5 random seeds with a replay ratio of 2.

Method DrQ BBF

S&P - ✓ - - - - ✓ ✓ ✓
HR - - - 20k 40k 40k ✓ ✓ ✓
H&T - - ✓ - - ✓ - ✓ -
SSL - - - - - - - - ✓

Alien 841.52 729.1 730.06 838.6 947.22 924.9 1228.7 1180.0 1121.7
Amidar 182.46 122.78 148.82 181.26 166.01 221.67 219.8 293.1 236.6
Assault 559.98 848.25 604.08 765.18 653.28 638.26 1657.3 1844.2 2004.5
Asterix 831.4 572.5 823.5 791.8 813.4 819.3 4699.0 4121.6 3169.7
BankHeist 138.94 24.74 263.56 51.56 86.78 56.32 315.4 712.8 768.8
BattleZone 6404.0 2762.0 8038.0 4040.0 6186.0 4694.0 23752.1 21638.5 23681.4
Boxing 10.6 42.84 14.29 40.98 23.61 34.26 60.8 62.5 77.3
Breakout 11.95 9.8 13.13 18.91 12.55 15.69 245.6 223.3 331.0
CrazyClimber 12031.2 6364.0 13808.4 16158.0 14649.4 18154.2 56440.7 45579.0 60864.5
ChopperCommand 917.2 600.6 673.4 976.0 922.6 816.6 2149.3 3238.0 4251.5
DemonAttack 663.93 906.47 657.41 1013.14 819.02 813.4 11502.5 8248.7 18298.3
Freeway 27.28 21.99 27.29 28.33 29.21 28.95 21.4 21.9 23.1
Frostbite 828.96 561.16 2218.9 1262.06 1923.42 1939.32 2266.2 2838.2 2023.0
Gopher 397.52 602.24 521.76 533.32 577.84 455.76 1758.3 2068.1 1209.4
Hero 7198.58 6293.84 6193.58 7119.41 7677.46 6367.63 4905.8 7448.5 5741.8
Jamesbond 349.0 192.5 317.5 442.6 281.6 358.2 753.1 921.7 1124.6
Kangaroo 3582.0 614.4 2685.2 5534.8 2922.8 2211.4 5584.2 6366.7 5032.0
Krull 3996.46 4697.5 3577.46 4414.6 3897.84 3920.04 7504.2 7695.1 8069.8
KungFuMaster 17319.6 5106.2 12035.4 13909.2 13032.4 19138.8 18166.8 17296.7 16616.8
MsPacman 1251.24 849.66 1424.3 1106.18 1459.34 1062.72 1941.0 1749.3 2217.8
Pong −7.13 −20.34 −15.01 −10.82 −13.96 −4.11 13.0 12.8 13.6
Qbert 2304.05 763.05 3382.6 3188.45 3620.3 3408.35 3530.5 4237.0 3245.3
RoadRunner 12821.6 6594.8 14674.2 18029.0 16383.0 13995.6 27572.1 29422.4 26419.0
Seaquest 498.12 390.88 531.92 564.08 457.6 550.56 1188.1 1168.8 988.6
PrivateEye 80.0 33.0 85.84 34.62 82.4 100.0 34.8 28.5 39.0
UpNDown 4214.26 4420.98 4269.64 9608.54 6508.24 8451.4 10266.5 7742.0 15122.6

IQM 0.243 0.139 0.287 0.332 0.288 0.328 0.826 0.891 0.940
Median 0.193 0.138 0.260 0.254 0.241 0.329 0.711 0.749 0.755
Mean 0.468 0.458 0.471 0.694 0.532 0.584 1.737 1.719 2.175
OG 0.642 0.728 0.617 0.580 0.607 0.583 0.397 0.372 0.377

23

