Hojoon Lee

AI RESEARCHER

⊠ joonleesky@kaist.ac.kr | 🛣 blog | 🖓 github

Research Interests .

I'm passionate about developing embodied AI that can continuously learn and adapt in dynamic environments. I envision foundation models acting as the "brain," capturing vast general knowledge and planning long-term strategies. Then, these strategies can be executed by small, specialized agents. To do so, I am particularly interested in:

(i) Finding efficient frameworks to integrate foundation models into embodied systems that enhance cognitive capabilities.

(ii) Designing scalable, compute- and sample-efficient RL algorithms to develop small, task-specific policies.

Education _

KAIST Seongnam, Korea M.S / Ph.D. STUDENT IN AI, ADVISED BY PROF. JAEGUL CHOO Mar.2020 - Present Korea University Seoul, Korea **B.S IN COMPUTER SCIENCE** Mar.2014 - Feb.2020 Work Sony Al Tokyo, Japan Research Intern Feb.2024 - Aug.2024 · Developing a vision-based autonomous racing agent in a realistic simulator using reinforcement learning. • Mentor: Takuma Seno, Kaushik Subramanian, and Peter stone. KakakEnterprise Seongnam, Korea AI RESEARCH INTERN Sep.2021 - Feb.2022 • Built an open-source reinforcement learning framework, Jorldy (300+ ☆). Neowiz Seongnam, Korea Mar.2019 - Jul.2019 ALRESEARCH INTERN • Develop a reinforcement learning agent that can play a turn-based strategy game, BrowndustZero. Selected Publications

Preprint

ICML'24

NeurIPS'23

SimBa: Simplicity Bias For Scaling Up Parameters in Deep Reinforcement Learning

- Hojoon Lee*, Dongyoon Hwang*, Donghu Kim, Hyunseung Kim, Jun Jet Tai, Kaushik Subramanian, Peter R.Wurman, Jaegul Choo, Peter Stone, Takuma Seno
- Designing network architectures that steer convergence toward simple functions allows for scaling up parameters in RL.

Slow and Steady Wins the Race: Maintaining Plasticity with Hare and Tortoise Networks

- Hojoon Lee, Hyeonseo Cho, Hyunseung Kim, Donghu Kim, Dugki Min, Jaegul Choo, Clare Lyle
- To maintain network plasticity, we introduce Hare and Tortoise networks, imitating the hippocampus and neocortex of the brain.

PLASTIC: Enhancing Input and Label Plasticity for Sample Efficient Reinforcement Learning

- Hojoon Lee*, Hanseul Cho*, Hyunseung Kim*, Daehoon Gwak, Joonkee Kim, Jaegul Choo, Se-Young Yun, Chulhee Yun
- Construct a sample-efficient RL algorithm by preserving the model's input & label plasticity throughout training.

Honors & Awards _____

Travel Award (\$3,000 as awards), Crevisse Partners, 2023.

SIGIR Best Short Paper Honorable Mention, 2022.

Korea Government Full Scholarship (\$10,000 per year), Ministry of Science and ICT of Korea, 2020, 2021.

2nd place (\$2,000 as awards), Korea University Graduation Project Competition, 1st & 2nd Semester, 2019.

College Scholarship (\$4,000 credit as awards), Seongnam Scholarship Foundation, 2017.

Eight Army General Paik Sun Yup Leadership Award, LTG Thomas.S.Vandal, U.S Army, 2017.

Technical-Skills _

ProficientGit, Python, PyTorch, Tensorflow, JaxExperienceC, Docker, SQL, Hadoop

Languages _

EnglishFluentKoreanNative

Academic Service _____

Reviewer Neurips'23-24, ICLR'24-25, ICML'24, AAAI'24

Publications

 SimBa: Simplicity Bias For Scaling Up Parameters in Deep Reinforcement Learning Hojoon Lee*, Dongyoon Hwang*, Donghu Kim, Hyunseung Kim, Jun Jet Tai, Kaushik Subramanian, Peter R.Wurman, Jaegul Choo, Peter Stone, Takuma Seno Designing network architectures that steer convergence toward simple functions allows for scaling up parameters in RL. 	Preprint
 Do's and Don'ts: Learning Desirable Skills with Instruction Videos Hyunseung Kim, Byungkun Lee, Hojoon Lee, Dongyoon Hwang, Donghu Kim, Jaegul Choo We present DoDont, a skill discovery algorithm that learns diverse behaviors while following the instruction videos. 	NeurIPS'24
 Slow and Steady Wins the Race: Maintaining Plasticity with Hare and Tortoise Networks Hojoon Lee, Hyeonseo Cho, Hyunseung Kim, Donghu Kim, Dugki Min, Jaegul Choo, Clare Lyle To maintain network plasticity, introduce Hare and Tortoise networks, imitating the hippocampus and neocortex of the brain 	ICML'24
 Investigating Pre-Training Objectives for Generalization in Vision-Based RL Donghu Kim*, Hojoon Lee*, Kyungmin Lee*, Dongyoon Hwang, Jaegul Choo Investigate which pre-training objectives are beneficial for out-of-distribution generalization in visual RL. 	ICML'24
 Adapting Pretrained ViTs with Convolution Injector for Visuo-Motor Control Donyoon Hwang*, Byungkun Lee*, Hojoon Lee, Hyunseung Kim, Jaegul Choo Introduce an add-on convolution module for ViT which injects locality and translation equivariant biases. 	ICML'24
 PLASTIC: Enhancing Input and Label Plasticity for Sample Efficient Reinforcement Learning Hojoon Lee*, Hanseul Cho*, Hyunseung Kim*, Daehoon Gwak, Joonkee Kim, Jaegul Choo, Se-Young Yun, Chulhee Yun Construct a sample-efficient RL algorithm by preserving the model's input & label plasticity throughout training. 	NeurIPS'23
 Learning to Discover Skills through Guidance Hyunseung Kim*, Byungkun Lee*, Hojoon Lee, Dongyoon Hwang, Kyushik Min, Sejik Park, Jaegul Cho Develop a skill-discovery algorithm based on the spirit of the Go-Explore algorithm. 	NeurIPS'23
 On the Importance of Feature Decorrelation for Unsupervised Representation Learning in RL Hojoon Lee, Gwanho Lee, Dongyoon Hwang, Hyunho Lee, Byungkyeun Lee, and Jaegul Choo Develop a self-predictive representation learning method from video for reinforcement learning. 	ICML'23
 ST-RAP: A Spatio-Temporal Framework for Real Estate Appraisal Hojoon Lee*, Hawon Jeong*, Byungkun Lee*, and Jaegul Choo Propose a novel real estate appraisal framework that integrates a real estate's spatial and temporal aspects. 	(short) CIKM'23
 Towards Validating Long-Term User Feedbacks in Interactive Recommender System Hojoon Lee, Dongyoon Hwang, Kyusik Min, and Jaegul Choo Analyze the existence of long-term effects in reinforcement learning-based interactive recommender systems. 	(short) SIGIR'22
DraftRec: Personalized Draft Recommendation for Winning in MOBA Games	WWW'22

• Hojoon Lee*, Dongyoon Hwang*, Hyunseung Kim, Byungkun Lee, and Jaegul Choo

• Develop a personalized champion recommendation system in League of Legends with a hierarchical transformer architecture.